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Chapter 1

Introduction

1.1 Bezout’s Theorem

Let C,C’ C P2 be two smooth algebraic curves of degrees n and m in the complex projective
plane P2. If C and C’' meet transversely, then the classical theorem of Bezout (see for
example [10]) asserts that C N C’ has precisely nm points.

We may reformulate the above statement using the language of cohomology. The curves
C and C’ have fundamental classes [C],[C’] € H*(P%,Z). If C and C’ meet transversely,
then we have the formula

[Clulc]=[cncy,

where the fundamental class [C N C'] € H*(P?,Z) ~ Z of the intersection C' N C’ simply
counts the number of points in the intersection. Of course, this should not be surprising: the
cup-product on cohomology classes is defined so as to encode the operation of intersection.
However, it would be a mistake to regard the equation [C] U [C'] = [C N C"] as obvious,
because it is not always true. For example, if the curves C and C’ meet nontransversely (but
still in a finite number of points), then we always have a strict inequality

[Clulc] > [Cn

if the right hand side is again interpreted as counting the number of points in the set-theoretic
intersection of C and ("'.

If we want a formula which is valid for non-transverse intersections, then we must alter
the definition of [C' N C’] so that it reflects the appropriate intersection multiplicities. De-
termination of these intersection multiplicities requires knowledge of the intersection C'NC’
as a scheme, rather than simply as a set. This is one of the classical arguments that nonre-
duced scheme structures carry useful information: the intersection number [C] U [C'] € Z,
which is defined a priori by perturbing the curves so that they meet transversally, can also
be computed directly (without perturbation) if one is willing to contemplate a potentially
non-reduced scheme structure on the intersection.

In more complicated situations, the appropriate intersection multiplicities cannot al-
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ways be determined from the scheme-theoretic intersection alone. Suppose that C and C’
are (possibly singular) subvarieties of P™, of complementary dimension and having a zero-
dimensional intersection. In this case, the appropriate intersection number associated to a
point p € C N C’ is not always given by the complex dimension of the local ring

Ocnerp = Ocp opn, Ocrp -

The reason for this is easy to understand from the point of view of homological algebra. Since
the tensor product functor ®ey. , is not exact, it does not have good properties when con-
sidered alone. According to Serre’s intersection formula, the correct intersection multiplicity
is instead the Euler characteristic

Z(—l)idim Tor,*™? (Oc, Ocp)-

This Euler characteristic contains the dimension of the local ring of the scheme-theoretic
intersection as its leading term, but also higher-order corrections. We refer the reader to [31]
for further discussion of this formula for the intersection multiplicity.

If we would like the equation [C]U[C"] = [C'NC"] to remain valid in the more complicated
situations described above, then we will need to interpret the intersection CNC' in some way
which remembers not only the tensor product O¢, ®opn, Oct ps but the higher Tor terms as
well. Moreover, we should not interpret these Tor-groups separately, but rather should think
of the total derived functor O¢p ®0Pn O¢p as a kind of “generalized ring”.

These considerations lead us naturally to the subject of derived algebraic geometry. Using
an appropriate notion of “generalized ring”, we will mimic the constructions of classical
scheme theory to obtain a theory of derived schemes in which a version of the formula
[C)U[C'] = [C N C'] can be shown to hold with (essentially) no hypotheses on C and C’.
Here, we must interpret the intersection CNC’ in the sense of derived schemes, and we must
take great care to give the proper definition for the fundamental classes (the so-called virtual
fundamental classes of [4]).

To motivate our discussion of “generalized rings”, we begin by considering the simplest
case of Bezout’s theorem, in which C and C' are lines in the projective plane P2. In this
case, we know that [C] U [C'] is the cohomology class of a point, and that C intersects C’
transversely in one point so long as C and C" are distinct. However, when the equality C = C'
holds, the scheme-theoretic intersection C' N C' does not even have the correct dimension.

Let us now try to give an idea of how we might formulate a definition for “derived scheme-
theoretic intersections” which will handle the degenerate situation in which C = C'. For
simplicity, let us consider only lines in the affine plane A? C P2, with coordinate ring C|z, 7).
Two distinct lines in A% may be given by equations z = 0 and y = 0. The scheme-theoretic
intersection of these two lines is the spectrum of the ring C[z,y]/{z,y) ~ C, obtained from
C|z,y] by setting the equations of both lines equal to zero. It has dimension zero because
Clz,y] is two-dimensional to begin with, and we have imposed a total of two equations.

Now suppose that instead of C and C’ being two distinct lines, they are actually two
identical lines, both of which have the equation z = 0. In this case, the affine ring of the
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scheme theoretic intersection is given by C[z,y|/(z, z) =~ C[y]. This ring has dimension one,
rather than the expected dimension zero, because the two equations are not independent:
setting £ = 0 twice is equivalent to setting z = 0 once. To obtain derived algebraic geometry,
we need a formalism of “generalized rings” in which imposing the equation z = 0 twice is
not equivalent to imposing the equation once.

One way to obtain such a formalism is by “categorifying” the notion of a commuta-
tive ring. That is, in place of ordinary commutative rings, we should consider categories
equipped with “addition” and “multiplication” operations (which are now functors, rather
than ordinary functions). For purposes of the present discussion, let us call such an object a
categorical ring. We shall not give a precise axiomatization of this notion, which turns out
to be quite complicated (see [19], for example).

Example 1.1.1. Let Z3, denote the semiring of nonnegative integers. We note that Zsq
arises in nature through the process of “decategorification”. The nonnegative integers were
introduced in order to count finite collections: in other words, they correspond to isomor-
phism classes of objects in the category Z of finite sets. Then Z is naturally equipped with
the structure of a categorical semiring, where the addition is given by forming disjoint unions
and the multiplication is given by Cartesian products. (In order to complete the analogy
with the above discussion, we should “complete” the category Z by formally adjoining in-
verses, to obtain a categorical ring rather than a categorical semiring, but we shall ignore
this point.)

To simplify the discussion, we will consider only categorical rings which are groupoids:
that is, every morphism in the underlying category is an isomorphism. If € is a categorical
ring, then the collection of isomorphism classes of objects 7y € of € forms an ordinary ring.
Every commutative ring R arises in this way: for example, we may take Cg to be a category
whose objects are the elements of R and which contains only identity maps for morphisms.
The categorical rings which arise in this way are very special: their objects have no nontrivial
automorphisms. For a given commutative ring R, there are many other ways to realize an
isomorphism R =~ 7y € with the collection of isomorphism classes of objects in a categorical
ring €. A crucial observation to make is that although € is not uniquely determined by
R, there is often a natural choice for € which is dictated by the manner in which R is
constructed.

As an example, let us suppose that the commutative ring R is given as a quotient R'/{z —
y), where R’ is some other commutative ring and z,y € R’ are two elements. Suppose
that the ring R’ has already been “categorified” in the sense that we have selected some
categorical ring €’ and an identification of R’ with 7y @. To this data, we wish to associate
some “categorification” € of R. Roughly, the idea should be to think of z and y objects
of @, and to impose the relation z = y at the categorical level. However, it is extremely
unnatural to ask that two objects in a category be equal; instead one should ask that they
be isomorphic. In other words, the quotient category € should not be obtained from €' by
identifying the objects z and y. Instead we should construct € by enlarging € so that it
includes an isomorphism @ : z =~ y. Since we want C to be a categorical ring, the formation
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of this enlargement is a somewhat complicated business: in addition to the new isomorphism
o, we must also adjoin other isomorphisms which can be obtained from « through addition,
multiplication, and composition (and new relations, which may cause distinct isomorphisms
in € to have the same image in €).

To make the connection with our previous discussion, let us note that the construction
of € from €' given in the preceding paragraph is interesting even in the “trivial” case where
z = y. In this case, z and y are already isomorphic when thought of as objects of €.
However, in € we get a new isomorphism a between z and y, which generally does not lie
in the image of the natural map Home(z,y) — Home(z,y). Consequently, even though
the natural quotient map R’ — R is an isomorphism, the corresponding “categorical ring
homomorphism” € — € need not be an equivalence of categories. Imposing the new relation
T = y does not change the collection of isomorphism classes of objects, but usually does
change the automorphism groups of the objects. Consequently, if we begin with any objects
z and y, we can iterate the above construction two or more times, to obtain a categorical
ring € equipped with multiple isomorphisms z ~ y. These isomorphisms are (in general)
distinct from one another, so that the categorical ring € “knows” how many times z and y
have been identified.

We have now succeeded in finding a formalism which is sensitive to “redundant” infor-
mation: we just need to replace ordinary commutative rings with categorical rings. The next
question we should ask is whether or not this formalism is of any use. Let us suppose that, in
the above situation, €’ is discrete in the sense that every object has a trivial automorphism
group. We note that the ring R = R'/(z — y) of objects of € may be naturally identified
with the cokernel of the map

¢ . RI z;y RI
It turns out that the automorphism groups in € also carry interesting information: they all
turn out to be naturally isomorphic to the kernel of ¢. .

Let us return to geometry for a moment, and suppose that R’ is the affine ring of a curve
(possibly nonreduced) in A? = SpecC[z,y]. Let R" = Clz,y]/(z — y) denote the affine
ring of the diagonal. Then the cokernel and kernel of ¢ may be naturally identified with
Tore®¥(R', R") and TorC™¥(R/, R"). In other words, just as the leading term in Serre’s
intersection formula has a geometric interpretation in terms of tensor constructions with
ordinary commutative rings, we can obtain a geometric interpretation for the second term if
we are willing to work with categorical rings.

Unfortunately, this is far as categorical rings will take us. In order to interpret the next
term in Serre’s intersection formula, we would need to take “categorification” one step further
and consider ring structures on 2-categories. If we want to understand the entire formula,
then we need to work with oo-categories. Fortunately, the oo-categorical rings which we
will need are of a particularly simple flavor: they are co-groupoids, meaning that all of the
n-morphisms are invertible for n > 1. Although the general theory of co-categories is a
hairy business, the co-groupoids are well-understood: they are essentially the same thing as
spaces (say, CW-complexes), as studied in homotopy theory. If X is any space, then it gives
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rise to an oo-groupoid as follows: the objects are the points of X, the morphisms are the
paths between points, the 2-morphisms are homotopies between paths, the 3-morphisms are
homotopies between homotopies, and so on. The converse assertion, that every oo-groupoid
arises in this way, is a generally accepted principle of higher category theory.

This suggests that an co-categorical ring should be a topological space X equipped with
some kind of ring structure. The simplest way of formulating the latter condition is to
require X to be a topological ring: that is, a commutative ring with a topology, for which
the addition and multiplication are continuous maps.

Remark 1.1.2. There exist other reasonable theories of “oo-categorical rings”, in which
the ring axioms need only hold only up to homotopy. In fact, the setting of topological
commutative rings turns out to rather restrictive: the categorical semiring Z of finite sets,
discussed above, cannot be modelled by a topological semiring. This is true even after passing
to a categorical ring by formally adjoining “negatives”. We will survey the situation in §2.6,
where we argue that topological commutative rings seem better suited to algebro-geometric
purposes than their more sophisticated relatives.

Just as an ordinary scheme is defined to be “something which looks locally like Spec A
- where A is a commutative ring”, a derived scheme will be defined to be “something which
.looks locally like Spec A where A is a topological commutative ring”.

Remark 1.1.3. We should emphasize that the topology of such a ring A only matters
“up to homotopy equivalence”: it is simply a mechanism which allows us to discuss paths,
homotopies between paths, and so forth. The topology on A should be thought of as an
essentially combinatorial, rather than geometric, piece of data. Consequently, most of the
topological rings which arise in mathematics are quite uninteresting from our point of view.
For example, any ring which is a topological vector space over R is contractible, and thus
equivalent to the zero ring. On the other hand, any p-adically topologized ring has no
nontrivial paths, and is thus equivalent to a discrete ring from our point of view. The
topological rings which do arise in derived algebraic geometry are generally obtained from
discrete rings by applying various categorical constructions, and are difficult to describe
directly.

The theory of derived algebraic geometry bears some similarity to the theory of alge-
braic stacks. Both theories involve some mixture of classical algebro-geometric ingredients
(commutative algebra, sheaf theory, and so forth) with some additional ideas which are
category-theoretic, or homotopy-theoretic, in nature. However, we should emphasize that
the aims of the two theories are completely distinct. The main purpose for the theory of
algebraic stacks is to provide a setting in which various moduli functors are representable
(thereby enabling one to discuss, for example, a moduli stack of smooth curves of some fixed
genus). This is not the case for derived algebraic geometry. Rather, one should think of the
relationship between derived schemes and ordinary schemes as analogous to the relationship
between ordinary schemes and reduced schemes. If one considers only reduced test objects,
then non-reduced schemes structures are of no help in representing moduli functors because
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Hom(X,Y™) 5 Hom(X,Y) whenever X is reduced. The theory of non-reduced schemes is
instead useful because it enlarges the class of test objects on which the moduli functors are
defined. Even if our ultimate interest is only in reduced schemes (such as smooth algebraic
varieties), it is useful to consider these schemes as defining functors on possibly non-reduced
rings. For example, the non-reduced scheme X = Spec Cle]/(e?) is an interesting test object
which tells us about tangent spaces: Hom(X,Y) may be thought of as classifying tangent
vectors in Y.

The situation for derived schemes is similar: assuming that our moduli functors are
defined on an even larger class of test objects leads to an even better understanding of the
underlying geometry. We will illustrate this using the following example from deformation
theory:

Example 1.1.4. Let X be a smooth projective variety over the complex numbers. The
following statements about the deformation theory of X are well-known:

1. The first-order deformations of X are classified by the cohomology H'(X, Tx) of X
with coefficients in the tangent bundle of X.

2. A first-order deformation of X extends to a second-order deformation if and only if a
certain obstruction in H?(X, Tx) vanishes.

Assertion (1) is very satisfying: it provides a concrete geometric interpretation of an
otherwise abstract cohomology group, and it can be given a conceptual proof using the
interpretation of H! as classifying torsors. In contrast, (2) is usually proven by an ad-hoc
argument which uses the local triviality of the first order deformation to extend locally, and
then realizes the obstruction as a cocycle representing the (possible) inability to globalize
this extension. This argument is computational rather than conceptual, and it does give
not us a geometric interpretation of the cohomology group H?(X,Tx). We now sketch an
alternative argument for (2) which does not share these defects.

As it turns out, H?(X, Tx) also classifies a certain kind of deformation of X, but a
deformation of X over the “nonclassical” base Spec C[d] where we adjoin a generator ¢ in
“degree 1” (in other words, we take the ordinary ring C and impose the equation 0 = 0
according to the recipe outlined earlier). Namely, elements of H*(X, Tx) may be identified
with equivalences classes of flat families over Spec C[d] together with an identification of
the closed fiber of the family with X. In other words, H*(X, Tx) classifies Spec C[6]-valued
points of some moduli stack of deformations of X.

The interpretation of obstructions as elements of H*(X, Tx) can be obtained as follows.
The ordinary ring C[e]/(€®) can be realized as a “homotopy fiber product” Cle]/(¢)* x¢j5 C,
for an appropriately chosen map of “generalized rings” Cle]/(e*) — C[d]. In geometric terms,
this means that Spec C[e]/(¢*) may be constructed as a pushout Spec Cle]/(€?) [gpec o5 SPeC C-
Therefore, to give a second-order deformation of X, we must give X, a first order d?orma—
tion of X, and an identification of their restrictions to Spec C[§]. This is possible if and only
if the first order deformation of X restricts to the trivial deformation of X over Spec C[4],
which is equivalent to the vanishing of a certain element of H*(X, Tx).
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Derived algebraic geometry seems to be the appropriate setting in which to understand
the deformation-theoretic aspects of moduli problems. It has other applications as well, many
of which stem from the so-called “hidden smoothness” philosophy of Kontsevich. According
to this point of view, if one works entirely in the context of derived algebraic geometry,
one can (to some extent) pretend that all algebraic varieties are smooth. More precisely,
many constructions which are usually discussed only in the smooth case can be adapted to
nonsmooth varieties using ideas from derived algebraic geometry:

e The cotangent bundle of a smooth algebraic variety may be generalized to the non-
smooth case as the cotangent compler.

e The deRham compléx of a smooth algebraic variety can be generalized to the non-
smooth case as the derived deRham complez of Illusie (see [17]).

e In certain cases, one can mimic the usual construction of the sheaf of differential
operators on a smooth variety, using the tangent complex in place of the tangent
bundle. This allows one to formulate a theory of (complexes of) algebraic D-modules
on a possibly singular algebraic variety X, whose definition does not depend on (locally)
embedding X into a smooth ambient variety.

e The fundamental class of an algebraic variety may be replaced by a more subtle “virtual
fundamental class”, which allows one to prove a Bezout-type theorem [C] U [C'] =
[C N '] in complete generality.

Remark 1.1.5. The freedom to compute with non-transverse intersections can be extremely
useful, because interesting situations often possess symmetries which are lost after pertur-
bation. As an example, consider equivariant cobordism theory. Because transversality fails
in the equivariant context, the classical Pontryagin-Thom construction does not work as
expected to produce equivariant spectra whose homotopy groups are cobordism classes of
manifolds equipped with smooth group actions (see [14]). Consequently, one obtains two dif-
ferent notions of equivariant cobordism groups: one given by manifolds modulo cobordism,
and one given by the Pontryagin-Thom construction. The second of these constructions
seems to fit more naturally into the context of equivariant stable homotopy theory. The
geometric meaning of the latter construction can be understood in the setting of derived dif-
ferential topology: the Pontryagin-Thom construction produces a spectrum whose homotopy
groups represent certain cobordism classes of equivariant derived manifolds (a class of objects
which includes non-transverse intersections of ordinary manifolds). In the non-equivariant
case, any derived manifold is cobordant to an ordinary manifold, but in the presence of a
group action this is not true.

We hope that the reader is now convinced that a good theory of derived algebraic geome-
try would be a useful thing to have. The purpose of this paper is to provide the foundations
for such a theory. We will discuss derived schemes (and, more generally, derived versions
of Artin stacks) from both a geometric and functorial point of view. Our main result is an
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analogue of Artin’s representability theorem, which gives a precise characterization of those
functors which are representable by derived stacks. In [23] and [24] we shall forge the link
between the formalism developed here and some of the applications mentioned above.
There exist other approaches to derived algebraic geometry in the literature. The earliest
of these is the notion of a differential graded scheme (see [7], for example). This approach
employs differential graded algebras in place of topological rings. In characteristic zero, the
resulting theory can be related to ours. In positive characteristic, the notion of a differential
graded scheme is poorly behaved. More recent work of Toén and Vezzosi has been based
on the more sophisticated notion of an F.-ring spectrum. We will survey the relationship
between these approaches in §2.6. It is worth noting that the proof of our main result,
Theorem 7.1.6, can be adapted to produce moduli spaces in the E-context. '

1.2 Contents

We now outline the contents of this paper. After this introduction, we will begin in §2 by
reviewing some of the background material that we shall need from the theory of abstract
stable homotopy categories and structured ring spectra. Since these topics are somewhat
technical and are adequately treated in the literature, our exposition has the character of a
summary.

In §3, we begin to study the “generalized rings” of the introduction in their incarnation
as simplicial commutative Tings. We explain how to generalize many ideas from commutative
algebra to this generalized setting, and review the theory of cotangent complexes. Finally,
we discuss an analogue of Popescu’s theorem on the smoothing of ring homomorphisms,
which applies in the derived setting.

Our study of commutative algebra takes on a more geometric flavor in §4, where we discuss
various topologies on simplicial commutative rings and the corresponding “spectrification”
constructions. This leads us to the definition of a derived scheme, which we shall proceed to
relate to the classical theory of schemes, algebraic spaces, and Deligne-Mumford stacks.

The geometric approach to scheme theory gives way in §5 to a more categorical approach.
We show that derived schemes may also be described as certain space-valued functors defined
on simplicial commutative rings. We then consider a more general class of functors, analogous
to Artin stacks (and more generally, higher Artin stacks) in the classical setting. We follow
this with a discussion of various properties of derived schemes, derived Artin stacks, and
morphisms between them.

In §6, we will discuss the derived version of completions of Noetherian rings, and give
a characterization of those functors which are representable by complete local Noetherian
rings. This result is closely related to the infinitesimal deformation theory discussed in [30].

In §7, we give the proof of our main result, a derived version of Artin’s representability
theorem. We give a somewhat imprecise formulation as Theorem 1.2.1 below; the exact
statement requires concepts which are introduced later and will be given as Theorem 7.5.1.
The theorem addresses the question of when an abstract moduli functor ¥ is representable
by a geometric object, so that F(A) = Hom(Spec A, X) for some derived scheme or derived
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stack X. We note that even if F is represented by an ordinary scheme, it will not be a
set-valued functor when we apply it to topological commutative rings. Hence, we consider
instead space-valued functors.

Theorem 1.2.1. Let R be a Noetherian ring which is ezcellent and possesses a dualizing
complex (more generally, R could be a topological ring satisfying appropriate analogues of
these conditions). Let F be a covariant functor from topological R-algebras to spaces (always
assumed to carry weak homotopy equivalences into weak homotopy equivalences). We shall
suppose that there exists an integer n such that m;(F(A),p) = 0 for any i > n, any discrete
R-algebra A, and any base point p € F(A) (if n = 0, this says that when A is discrete, F(A)
is homotopy equivalent to a discrete space: in other words, F is set-valued when restricted
to ordinary commautative Tings).

The functor F is representable by a derived stack which is almost of finite presentation
over R if and only if the following conditions are satisfied:

1. The functor F satisfies the functorial criterion for being almost of finite presentation
(that is, it commutes with certain filtered colimits, up to homotopy).

2. The functor F is a sheaf with respect to the étale topology.

3. If A— C and B — C are fibrations of topological R-algebras which induce surjections
moA — mC, moB — moC, then F(A x¢ B) is equivalent to the homotopy fiber product
of F(A) and F(B) over F(C).

4. The functor F is nilcomplete (see §3.4); this is a harmless condition which is essentially
always satisfied).

5. If A is a (discrete) commutative Ting which is complete, local, and Noetherian, then
F(A) is equivalent to the homotopy inverse limit of the sequence of spaces {F(A/m*)},
where m denotes the mazimal ideal of A.

6. Let n € F(C), where C 1is a (discrete) integral domain which is finitely generated as
a moR-algebra. For each i € Z, the tangent module T;(n) (defined in §7.4) is finitely
generated as a C-module.

Our proof of this result follows Artin (see [2]), making use of simplifications introduced
by Conrad and de Jong (see [8]) and further simplifications which become possible only in
the derived setting.

We remark that the representability theorem is actually quite usable in practice. Of the
six hypotheses listed above, the first four are usually automatically satisfied. Condition (5)
stated entirely in terms of the restriction of the functor F to “classical” rings; in particular,
if this restriction is representable by a scheme, algebraic space, or algebraic stack, then con-
dition (5) is satisfied. Condition (6) is equivalent to the existence of a reasonable cotangent
complex for the functor &, which is a sort of linearized version of the problem of constructing
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F itself. This linearized problem is usually easy to solve using the tools provided by derived
algebraic geometry.

We conclude in §8 with some applications of our version of Artin’s theorem. In particular,
we define derived versions of Hilbert functor, the Picard functor, and the “stable curve”
functor. Using our representability theorem, we will prove the representability of these
functors and thereby construct derived analogues of Hilbert schemes, Picard schemes and
moduli stacks of stable curves (some of these have been constructed in characteristic zero by
very different methods; see [7]).

Throughout this paper, we will prove “derived versions” of classical results in commu-
tative algebra and algebraic geometry, such as Popescu’s theorem on smoothing ring ho-
momorphisms, Grothendieck’s formal GAGA theorem, and Schlessinger’s criterion for the
formal representability of “infinitesimal” moduli problems. These results are needed for our
representability theorem and its applications, but only in their classical incarnations. Con-
sequently, some of our discussion is unnecessary: in particular §6 might be omitted entirely.
Qur justification for including these results is that we feel that derived algebraic geometry
can contribute to our understanding of them, either by offering more natural formulations
of the statements (as in the case of Schlessinger’s criterion) or more natural proofs (as in the
case of the formal GAGA theorem).

1.3 Notation and Terminology

It goes without saying that the study of derived algebraic geometry requires a great deal of
higher category theory. This is a story in itself, which we cannot adequately treat here. For
a review of co-category theory from our point of view, we refer the reader to [22]. We will
generally follow the terminology and notational conventions of [22] regarding oo-categories.
In particular, we shall write 8 for the oo-category of spaces.

However, there is one bit of terminology on which we will not follow [22], and that is our
use of the word “stack”. The word “stack” has come to have several closely related meanings
in mathematics: a “sheaf” of categories, a “sheaf” of groupoids, a geometric object which
represents a groupoid-valued functor, and (in [22]) a “sheaf” of co-groupoids. In this paper,
we shall use the word “stack” in the third sense: in reference to algebro-geometric objects.
For all other purposes, we shall use the word “sheaf”, together some indication of what
sort of values are taken by the sheaf in question. If not otherwise specified, all sheaves are
assumed to be valued in the co-category 8§ of spaces, rather than in the ordinary category of
sets.

We will also make occasional use of the theory of oo-topoi developed in [22]. This is
not entirely necessary: using Theorem 4.5.10, one can reformulate our notion of a derived
scheme in a fashion which mentions only ordinary topoi. However, in this case we would
still need to deal with S-valued sheaves on topoi, and the language of oo-topoi seems best
suited to this purpose (see Remark 4.1.2).

If C is an oc-category and X € € is an object, then we will write €,x for the slice oo-
category whose objects are diagrams A — X in €. Dually, we write Cx, for the oo-category

18



whose objects are diagrams X — A in €. Finally, given a morphism f: X — Y in €, we
write Cx; /y for the co-category (Cx/);y =~ (C/v)x/-

We remark that for us, the co-category of 8-valued sheaves on a topos X is not necessarily
the one given by the Jardine model structure on simplicial presheaves. We briefly review
the situation, which is studied at greater length in [22]. If X is an oo-topos, then the full
subcategory <o X C X consisting of discrete objects forms an ordinary (Grothendieck) topos.
There is an adjoint construction which produces an co-topos A2) from any ordinary topos
2). The adjunction takes the form of a natural equivalence

Hom(X, AQ) ~ Hom(7<, X, D)

between the co-category of geometric morphisms (of co-topoi) from X to A) and the cat-
egory of geometric morphisms (of ordinary topoi) from 7¢o X to 9). The Jardine model
structure on simplicial presheaves produces not the co-topos A%) but instead a localization
thereof, which inverts the class of co-connected morphisms. Although this localization leads
to simplifications in a few places, we feel that it is on the whole more natural to work with
A%). In practice, the distinction will never be important.

Throughout this paper, we will encounter oo-categories equipped with a tensor product
operation ®. Usually this is related to, but not exactly a generalization of, some “ordinary”
tensor product for modules over a ring. For example, if R is a commutative ring, then the
left derived functors of the ordinary tensor product give rise to a tensor product operation
®” on the derived category of R-modules (and also on the oco-category which gives rise to
it). To avoid burdening the notation, we will omit the superscript. Thus, if M and N are
R-modules, M ® N will not denote the ordinary tensor product of M and N but instead
the complex M ®* N whose homologies are the R-modules Torf(M, N). Whenever we need
to discuss the ordinary tensor product operation, we shall denote it by Torg'(M yN). We
will use a similar notation for dealing with inverse limits of abelian groups. If {A,} is an
inverse system of abelian groups, then it may be regarded as an inverse system of spectra,
and it has a homotopy inverse limit which is a spectrum that shall be denoted by lim{A,}.
The homotopy groups of this spectrum are given by the right derived functors of the inverse
limit, and we shall denote them by lim*{A4,} = 7_ lim{A,}. We remark that if {A,} is
given by a tower

.= Ay — A — A

of abelian groups, then lim*{4,} vanishes for & ¢ {0, 1}.

We use the word connective to mean (—1)-connected; that is, a spectrum X is connective
if m; X =0 for i < 0. We call a space or spectrum X n-truncated if m; X is trivial for: > n
(and any choice of base point). We call a space or spectrum truncated if it is k-truncated for
some k € Z (and therefore for all sufficiently large values of k).
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Chapter 2

Background

The purpose of this section is to provide a brief introduction to certain ideas which will
appear repeatedly throughout this paper, such as stable oco-categories and structured ring
spectra. Most of this material is adequately treated in the literature, so we generally be
content to sketch the ideas without going into extensive detail.

2.1 Stable oco-Categories

It has long been understood that there is a formal analogy between chain complexes with
values in an abelian category and topological spaces (so that one speaks of homotopies
between complexes, contractible complexes, and so forth). The analogue of the homotopy
category of topological spaces is the derived category of an abelian category, a triangulated
category which provides a good setting for many constructions in homological algebra. For
some sophisticated applications, the derived category is too crude: it identifies homotopic
morphisms of chain complexes without remembering why they are homotopic. In order to
correct this defect, it is necessary to view the derived category as the homotopy category
of some underlying oo-category. We review how to do this in §2.3. It turns out that the
oo-categories which arise in this way have special properties which are related to the additive
structure of the underlying triangulated category. The purpose of this section is to investigate
oo-categories with these special properties, which we shall call stable co-categories.

The notion of a stable co-category has been investigated in the context of model categories
under the name of a stable model category (for a discussion, see [15]), and later in the more
natural context of Segal categories.

Definition 2.1.1. Let € be an oo-category. An object of € is a zero object if it both initial
and final.

In other words, an object 0 € € is zero if Home(X,0) and Home(0, X) are both con-
tractible for any object X € C.

Remark 2.1.2. If C has a zero object, then that object is determined up to (essentially
unique) equivalence.
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Remark 2.1.3. Let € be an oco-category with a zero object 0. For any X, Y € C, the natural
map
Home(X, 0) x Home(0,Y) — Home(X,Y)

has contractible source. It therefore provides a point of Home(X,Y) (up to “contractible”
ambiguity, which we shall ignore), which we shall refer to as the zero map and shall denote
also by 0.

Let € be an oo-category with a zero object 0. Given a morphism g : ¥ — Z in €, a
kernel for g is a fiber product ¥ xz 0. Dually, a cokernel for g is a pushout Z [, 0.

Definition 2.1.4. Let € be an oco-category with a zero object. A triangle in € consists of a

composable pair of morphisms X Ly sz , together with a homotopy between g o f and
0 in Home(X, Z).

Suppose that ¢ : Y — Z is fixed. Completing this data to a triangle X Ly 4 zis
equivalent to providing a morphism from X into the kernel of g. We shall say that this
triangle is ezact, or a fiber sequence, if this map is an equivalence (so that X is a kernel for
g). Dually, we shall say that a triangle is co-ezact, or a cofiber sequence, if it exhibits Z as
a cokernel for f.

Definition 2.1.5. An co-category C is stable if it satisfies the following conditions:

e The oo-category C has a zero object.
e Every morphism in € has a kernel and a cokernel.

o A triangle in € is exact if and only if it is co-exact.

Example 2.1.6. Recall that a spectrum is a sequence {X;} of spaces equipped with base
point, together with equivalences X; ~ QX,,, where {2 denotes the loop space functor. The
oo-category of spectra is stable (the first two axioms follow formally, while the third may be
deduced from the “homotopy excision theorem”). This is the motivation for our terminology:
a stable oo-category is an oo-category which resembles the oo-category of stable homotopy
theory.

Remark 2.1.7. The third clause of Definition 2.1.5 is analogous to the axiom for abelian
categories which asserts that the image of a morphism be isomorphic to its coimage.

Remark 2.1.8. One attractive feature of the notion of a stable co-category is that stability
is a property of co-categories, rather than additional data which must be specified. We
recall that a similar situation exists for additive categories. Although additive categories
are usually presented as categories equipped with additional structure (an abelian group
structure on all Hom-sets), this additional structure is in fact determined by the underlying
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category structure. If a category € has a zero object, finite sums, and finite products, then
there always exists a unique map A ® B — A x B which is given by the matrix

idg O
0 idg|.

If this morphism has an inverse ¢4 g, then we may define a sum of two morphisms f,g :
¢y,

X — Y by defining f + g to be the composite X — X x X MMy xy X Y®pY - Y.
In the presence of an additional assumption guaranteeing the existence of additive inverses,
one may deduce that € is an additive category.

Let F : @ — € be a functor between stable co-categories. Suppose that F' carries zero
objects into zero objects. It follows immediately that I carries triangles into triangles. If,
in addition, F carries exact triangles into exact triangles, then we shall say that F' is ezact.
We will write £F(C, €') for the oo-category of exact functors from € to €' (considered as a
full subcategory of the oco-category of all functors from € to €'). The oo-category EF(C, €')
is itself stable. Moreover, it is easy to see that exactness admits the following alternative
characterizations:

Proposition 2.1.9. Let F': € — €' be a functor between stable co-categories. The following
are equivalent:

1. The functor F is left exact. That is, F' commutes with finite limits.
2. The functor F' is right ezact. That is, F' commutes with finite colimits.
8. The functor F is ezact.

The identity functor from any stable co-category to itself is exact, and a composition
of exact functors is exact. Consequently, we may consider the (oo, 2)-category of stable co-
categories and exact functors as a subcategory of the (0o, 2)-category of all co-categories.
We next note that this subcategory has good stability properties.

Example 2.1.10. If € is a stable oo-category, then the opposite co-category €% is also
stable.

Example 2.1.11. If € is stable oc-category, and Cq is a full subcategory containing a zero
object and stable under the formation of kernels and cokernels, then €, is stable and the
inclusion €y C € is exact.

Example 2.1.12. The (00, 2)-category of stable oo-categories admits all (co, 2)-categorical
limits, which are constructed by taking limits of the underlying oco-categories.

Example 2.1.13. If € is a stable co-category and s a regular cardinal, then Ind,(€) is a
stable oco-category.
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Proposition 2.1.14. IfC is a stable co-category, then h C has the structure of a triangulated
calegory.

Proof. Let X € C be an object. Then the zero map X — 0 has a cokernel, which we shall
write as X [1]. We shall call X[1] the suspension of X. Similarly, we may define X[—1] as the
kernel of 0 — X; we call X[—1] the desuspension of X. In view of the equivalence between
exactness and co-exactness, we see that suspension and desuspension are naturally inverse
to one another. Passing to the homotopy category, we obtain inverse equivalences which give
rise to the shift functor on A C.

We next prove that h C admits (finite) direct sums. It will suffice to prove that € itself
admits finite direct sums, since any direct sum in C is also a direct sum in the homotopy
category. We note that if A* - A — A” and B' — B — B”" are exact triangles, A’ @ B’
exists, and A @ B exists, then A” & B” may be constructed as the cokernel of the induced
map A' @ B — A® B. Now, for any pair of objects X,Y € €, we have exact triangles
0 - X — X and Y[-1] — 0 — Y. Thus, in order to construct X @ Y, it suffices to
construct 0 Y [-1] ~Y[-1] and X 0 ~ X.

To prove the additivity of A €, we could proceed using the suggestion of Remark 2.1.8
to show that finite sums coincide with finite products. However, it will be easier (and more
informative) to construct the additive structure directly. For any objects X,Y € C, we
have X ~ 0 x ) 0, so that Home(Y, X) is the loop space of Home(Y, X[1]) (with respect
to the base point given by the zero map). Iterating this construction, we can produce
(functorially) arbitrarily many deloopings of Home(Y, X). In other words, the co-category
€ is naturally enriched over spectra, in the sense that for all X,Y € € the space Home(Y, X)
is the zeroth space of an associated spectrum which, by abuse of notation, we shall also
denote by Home(Y,X). In particular, we note that Homye(Y,X) = moHome(Y, X) =~
72 Home(Y, X|2]) has an abelian group structure, which is functorial in X and Y.

Now suppose that we are given an exact triangle in €, consisting of a pair of morphisms

XLv2zZanda nullhomotopy « of g o f. From this data we may construct a morphism
h: Z — X|1], well defined up to homotopy, as follows. To give a map Z — X|[1], we must give
amap h': Y — X[1] together with a nullhomotopy £ of the composite X — X[1]. We take
h' to be the zero map, and 3 to be the tautological self-homotopy of 0 € Home(X, X|[1]). The
pair (h', ) determines a map h : Z — X[1]. We shall declare that the distinguished triangles

in h € are precisely those which are isomorphic to those diagrams X Lyvszhx [1] which
arise in this fashion.

This completes the construction of the triangulated structure on h €. To finish the proof,
one must verify that A C satisfies the axioms for a triangulated category. The details are
somewhat tedious; we refer the reader to [15] for a proof in a related context. a

Remark 2.1.15. We note that the definition of a stable co-category is quite a bit simpler
than that of a triangulated category. In particular, the octahedral axiom is a consequence
of oo-categorical principles which are basic and easily motivated.

Remark 2.1.16. As noted in the proof of Proposition 2.1.14, any stable co-category € is
naturally enriched over spectra. We will abuse notation by writing Home(X,Y') to represent
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both the space of maps from X to Y and the corresponding spectrum. Since the former is
simply the zeroth space of the latter, there is little risk of confusion: it will generally be clear
from context whether we refer to the space or to the spectrum.

Proposition 2.1.17. Let € be an oo-category with a zero object. The following conditions
are equivalent:

1. The oo-category C is stable.

2. The oo-category € has finite colimits and the suspension functor X — 0][, 0 s an
equivalence.

3. The oo-category € has finite limits and the loop space functor X — 0 xx 0 is an
equivalence.

Proof. We show that (1) < (2); the dual argument then gives (1) < (3). To begin, suppose
that C is stable. To show that C has all finite colimits, it suffices to show that C has an initial
object, pairwise sums, and coequalizers. The existence of an initial object is clear from the
~definition, and the coequalizer of a pair f,g : X — Y may be constructed as the cokernel
‘of the difference f — g : X — Y (which is well-defined up to homotopy, using the additive
structure on h €). The construction of sums was explained in the proof of Proposition 2.1.14.
Finally, we note that a triangle X — 0 — Y identifies Y with the suspension of X if and
only if it identifies X with the loop space of Y'; therefore the loop space functor is homotopy
inverse to the suspension functor.

For the reverse direction, we sketch an argument which we learned from Bertrand Toén.
Suppose that € has finite colimits and that the suspension functor is invertible. The invert-
ibility of the suspension functor shows in particular that Home(X,Y) = Q" Home(X[-n],Y).
We may therefore view € as an oo-category which is enriched over the oo-category 84 of
spectra. By general nonsense, we obtain an “enriched Yoneda embedding” € — D = SS:’.
Like the usual Yoneda embedding, this functor is fully faithful and we may therefore identify
€ which its essential image in D.

The oo-category D may be viewed as a limit of copies of §.,. Consequently, D is stable.
To prove that € is stable, it suffices to show that € C D contains the zero object and is
stable under the formation of kernels and cokernels. Stability under the formation of kernels
is obvious from the definition, since the Yoneda embedding € — D commutes with all limits.
Suppose f : X — Y is a morphism in €, having a cokernel Z € D. We wish to prove that
Z € C. Since Z[—1] may be identified with the kernel of f, we deduce that Z[—1] belongs
to C. Let Z’ denote the suspension of Z[-1] in €. Since Z[—1] is the loop space of Z' in €,
it is the loop space of Z’ in D, so that Z’ is the suspension of Z[—1] in D. It follows that Z’
is equivalent to Z, and belongs to C. O

We note that in a stable oc-category, one can often reduce the consideration of general
colimits to the simpler case of direct sums:

Proposition 2.1.18. Let k be a regular cardinal.
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e A stable oo-category C has all k-small colimits if and only if C has all k-small filtered
colimits, if and only if € has all k-small sums.

e An ezact functor F : € — €' between stable co-categories preserves k-small colimits
if and only if F' preserves all k-small filtered colimits, if and only if F preserves all
k-small sums.

e An object X € C is k-compact if and only if any map X — @ueaY, factors through
Buacio Ya, for some Ag C A having size < K.

Corollary 2.1.19. Let C be a stable oo-category. Then € is presentable if and only if it
satisfies the following conditions:

o The co-category C admits arbitrary sums.

e There ezists a small generator for €. That is, there exists an object X € C and a
cardinal k such that Home(X,Y) = 0 implies Y = 0, and any map X — @aeaYa
factors through @aeca, Yo for some subset Ag C A of size < k.

Remark 2.1.20. If {X,}ac4 is a family of objects of a stable co-category €, each equipped
with a map to X € C, then these maps exhibit X as the direct sum of {X,}qca if and
only if X is a direct sum in the homotopy category i C. Consequently, the presentability of
C is equivalent to a set of conditions on the homotopy category h € which may be studied
independently of the assumption that h C is the homotopy category of a stable oo-category:
see [29].

2.2 Localizations of Stable oco-Categories

Let € be a triangulated category. We recall that a t-structure on € is defined to be a pair
of full subcategories Cxp, C<; (always assumed to be stable under isomorphism) having the
following properties:

e For X € €3 and Y € C[—1], we have Home(X,Y) = 0.
o Cxo[1] € €30, C<o[-1] € Cxo.

e For any X € G, there exists a distinguished triangle X’ — X — X" — X’[1] where
X'e C’ZU and X" € eSQ[—l]

We write €y, for Cyo[n] and €<, for Cco[n], and we let C>p < = €5, NCsr. We refer
the reader to [5] for a more detailed discussion of t-structures on triangulated categories
(though our notation differs slightly from theirs, since we use a “homological” rather than
“cohomological” indexing).

If € is a stable oo-category, then a t-structure on € is defined to be a t-structure on
its homotopy category h € (which is triangulated by Proposition 2.1.14). In this case, for
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any X € C and any ¥ € Z, one has an exact triangle 75, X — X — 7<z-1.X, where
T>kX € Cxx and 7<x—1X € Cck_1. This triangle is unique up to a contractible space of
choices, so that 7> and 7<x may be regarded as functors € — €. One also checks that there
is a natural equivalence between the composite functors 7>,7<, and 7<,7>y; this composite
functor will be denoted by Tk <n. In particular, we let 7 = 7> <x[—k], so that nf maps
€ into € = C<p0- We note that €y is an ordinary category, and therefore equivalent
to hCy C hC€. This subcategory of A€ is called the heart of h € and is abelian (see [5]).
Consequently, we shall refer to Cy as the heart of €.

Example 2.2.1. Let 8., denote the oo-category of spectra. Then 8., has a t-structure,
given by (8co)>0 = {X € 80 : (Vi < 0)[m; X = 0]}, (800)<0 = {X € 8o : (Vi > 0)[mX = 0]}.
The heart of S, is equivalent to the category A of abelian groups. The functor 7y, : 8§, — A
defined above agrees with the usual functor m, which assigns to a spectrum X the group
[S*, X] of homotopy classes of maps from a k-sphere into X.

For the remainder of this section, we shall discuss the relationship between t-structures
and Bousfield localizations of stable oo-categories. For a discussion of Bousfield localization
from our point of view, we refer the reader to [22]. We briefly summarize the theory here.
Given a presentable oo-category € and a set S = {f : X — Y} of morphisms of €, we shall
say that an object Z € Cis S-localif, for any f : X — Y belonging to S, the induced map of
spaces Home(Y, Z) — Home(X, Z) is an equivalence. The basic result of the theory asserts
that for any X € €, there exists a map ¢ : X — LX where LX is S-local, and the morphism
¢ is, in some sense, built out of the morphisms of S (in the language of [22], ¢ belongs to
the saturated class generated by S). Moreover, the morphism ¢ : X — LX is essentially
unique, and functorially determined by X.

Let us now suppose that € is a stable oo-category. An object Z € € is S-local if and
only if any map f : X — Y in S induces a homotopy equivalence of spaces Home(Y, Z) —
Home(X, Z), which means that ¢; : m; Home(Y, Z) ~ m;Home(X, Z) for ¢ > 0. These
morphisms of homotopy groups fit into a long exact sequence

. — 7 Home(Y, Z) — m; Home(X, Z) — n; Home(ker f, Z) — m;_; Home(Y, Z) — . ..

From this long exact sequence, we see that if Z is S-local, then m; Home(ker f, Z) vanishes
for i > 0. Conversely, if m; Home(ker f, Z) vanishes for 2 > 0, then Z is S-local. Experi-
ence teaches us that in situations such as this, vanishing conditions on the homotopy groups
m; Home(ker f, Z) are more natural than conditions which assert the invertibility of the ho-
momorphisms ¢;. It is therefore natural to wonder if the S-locality of Z is equivalent to the
vanishing of certain homotopy groups m; Home(ker f, Z). This is not true in general, but
may instead be taken as a characterization of a good class of localizations of €:

Proposition 2.2.2. Let € be a stable, presentable oo-category. Let L : € — € be a lo-

calization functor, and let S be the collection of all morphisms f in € for which Lf is an
egquivalence. The following conditions are equivalent:
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1. The class S is generated (as a saturated collection of morphisms) by a set of morphisms
of the form 0 — A, A€ C.

2. The class S is generated by the morphisms {0 — A: LA =~ 0}.
3. If X Y — Z is a fiber sequence, where X and Z are S-local, then'Y is also S-local.

4. For any A € €, B € LG, the natural map n_; Hom(LA, B) — w_; Hom(A, B) is
injective.

5. The full subcategories C>p = {A : LA ~ O}and C<_y, = {A : LA ~ A} determine ¢
t-structure on C.

Proof. We will show that (1) = (2) = (3) = (4) = (5) = (1). It is clear that (1) implies
(2). Assuming (2), we see that an object Y is S-local if and only if 7o Home(A,Y') = 0 for
any A such that LA = 0. Then (3) follows from the long exact sequence.

Assume (3), let B € L€, and let 7 € n_; Home(LA, B) classify an extension B — C' —
LA — B[1]. Condition (4) implies that C is S-local. If the image of » in 7_; Home(A, B)
is trivial, then the induced extension of A is split by some map A — C. Since C is S-local,
this map factors through LA, so that n = 0. This proves (4).

Assume (4), and define €5 and €<_; asin (5). If X € €5 and ¥ € C<_;, then
Home(X,Y) = Home(LX,Y) = Home(0,Y) = 0. Stability of €<_; under the loop space
functor follows from a general fact that local objects are closed under the formation of limits.
The stability of €5, under suspensions follows from the fact that L : € — L€ commutes
with colimits. To complete the verification of (5), we consider for any X &€ C the triangle

X' - X —LX — X'[1].

It will suffice to show that LX’ = 0, or that Home(X’,Y') = 0 for any Y which is S-local.
Replacing Y by a suitable loop space of Y, it suffices to show that 0 = mo Home(X',Y) =
7_y Home(X'[1],Y). This follows from (4) and the long exact sequence.

Finally, suppose that (5) is satisfied. A cardinality argument shows that the collection of
all objects A € € such that LA = 0 is generated under filtered colimits by some set of objects
S. Let L’ be the localization functor which inverts every morphism {0 — A: A € &}; we
wish to show that L ~ L’. Clearly L factors through L’; replacing € by L' €, we may assume
that L' is the identity so L-does not kill any nonzero objects. In this case, ¢ consists only
of zero. Now (5) implies that C<_, = €. O

~ We will call a t-structure on a stable, presentable co-category admaissible if it arises from
a localization satisfying the equivalent conditions of Proposition 2.2.2.

Proposition 2.2.3. Let C be an co-category. The following conditions are equivalent:

1. There etists a presentable, stable co-category @', an admissible t-structure on €', and
an equivalence € ~ (€')>p.
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2. The oo-category C is presentable, has a zero object, and the suspension functor S is
fully faithful.

Proof. Tt is easy to see that (1) implies (2). For the converse, we take €’ to be the co-category
of “infinite loop” objects of €. Namely, let €’ denote the limit of the inverse system

e fRe

of co-categories. In other words, an object of € is given by a sequence {X;} of objects of €
together with equivalences f, : X; =~ QX, ;. Here : € — € denotes the loop space functor,
given by QX =0 xx 0.

We note that the construction of €’ from € is precisely analogous to the construction of
the co-category 8 of spectra from the co-category 8, of pointed spaces. We will therefore
borrow terminology from the theory of spectra, and speak of X; as the ith space of an
object {X;, f;} € €. In particular, we write 2°{X;, f;i} = Xo so that Q% : € — € is the
zeroth space functor. The functor 2 has a left adjoint $*, which carries an object X € @
to the “suspension spectrum” given by the sequence X, SX, S?X,.... Here S denotes the
suspension functor Y — 0]], 0, and we make use of the canonical equivalences Q5"+ X ~
S5"X which result from the hypothesis that the suspension functor is fully faithful.

Since €' is a limit of copies of €, it is presentable. By construction, the suspension functor
of € is invertible so that € is stable. We can endow €' with the t-structure “generated by”
the objects of the form S*X. Namely, we consider the admissible t-structure corresponding
to the localization which inverts every morphism 0 — §%°X, X € @ (the presentability of G
implies that it suffices to kill a set of objects X which generate € under colimits).

We first prove that for any X € €, the adjunction morphism SQX — X is a monomor-
phism. Since S is a fully faithful embedding of € into €', we see that C is enriched over
spectra, so that it suffices to show that the kernel of SQX — X is zero. For this, we just
need to know that the induced map Q2SQX — QX is an equivalence. A homotopy inverse
is given by the adjunction map ¥ — QSY, where Y = Q.X.

Now 5% is a fully faithful embedding of € into €', and by construction it factors through
Clo- Since 5™ is left adjoint to the “zeroth space” functor %, we see that Co={X¢€
C": Q®°X = 0}. To complete the proof, it suffices to show that if X = (..., X1,X0) € €
and Home (X,Y) = 0 whenever @Y = 0, then X is (equivalent to) a suspension spectrum.
In other words, we need to show that the natural map f : S*°X; — X is an equivalence.
Let K be the cokernel of f. Since Cyp is stable under colimits, we deduce that K € Cxo. If
°K = 0, then the identity map from K to itself is nullhomotopic, so that X = 0 and fis
an equivalence.

Now, K[—1] is the kernel of f. The Oth space of K is equivalent to the 1st space of K [—1],
which is the kernel of the natural map SX, — X,. But, as we noted above, the adjunction
morphism SQX; — X, is a monomorphism, so its kernel vanishes. This completes the
proof. a

Remark 2.2.4. Of course, the co-category €' of Proposition 2.2.3 is not unique. However,
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the candidate constructed in the proof is the unique choice which is right-complete with
respect to its t-structure, in terminology introduced below.

Remark 2.2.5. Let € be a presentable stable co-category, and let Cq be a localization of C.
Let L : € — G denote the localization functor. Then Cj is stable if and only if L is left exact.
In particular, since € is easily seen to be a localization of the oo-category of presheaves of
spectra on some subcategory €y C C, we see that the class of stable, presentable oo-categories
may be characterized as the smallest class of co-categories which contains the oo-category
Soo of spectra and is stable under limits and left exact localizations. This result is analogous
to Giraud’s characterization of topoi (see [3]), its co-categorical analogue (see [22]), and the
Gabriel-Popesco theorem for abelian categories (see [28)).

We next discuss various boundedness notions which can be associated to t-structures.
Assume that € is a stable oco-category equipped with a t-structure. Let €7 = J, C<;. We
shall say that € is left bounded if € = €.

At the other extreme, given a stable oo-category C equipped with a t-structure, we define
the left completion € of € to be the limit of the following tower of oco-categories:

Tn other words, an object of € is a sequence {Ci}i>o together with equivalences C; ~ 7<;Ci1
(which imply that C; € €;). There is a natural functor € — € which carries an object C to
the sequence {7<;C}. We shall say that € is left complete if this functor is an equivalence.

Proposition 2.2.6. For any stable co-category € equipped with a t-structure, the oo-categories
et and C are st stable. The functors C* — € — € are ezact. Moreover, there are natural equiv-

alences € ~ €% and @)t ~¢eF.

Consequently, we see that the concepts of “left bounded” and “left complete” stable
oo-categories (with t-structure) are essentially interchangeable.
The following proposition gives a good criterion for detecting left completeness:

Proposition 2.2.7. Suppose that € is a stable co-category with t-structure, which admits
countable products. Suppose further that Csq is stable under countable products. Then C is
left complete if and only if any A € Cso such that meA =0 for k > 0 is itself zero.

Proof. Since G is stable under all limits, the assumption implies that € is stable under
countable products. Since products of exact triangles are exact, the existence of the triangles

TsoX — X — 70X

7'21X — TZOX — TT()X,

implies that the formation of homotopy groups is compatible with countable products.
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The necessity is obvious; let us therefore assume that any element of €5y whose homotopy
groups vanish is identically zero. It follows that if f : A — B is a morphism of objects of
C»x which induces an isomorphism on homotopy, then f is an equivalence.

Since € admits countable products, it admits countable limits (by the dual form of
Proposition 2.1.18). Consequently, the natural functor /' : € — C has a right adjoint G,
given by formation of the inverse limit. We first claim that the natural map A — GFA is
an equivalence for each A € €. It is clear that G and F' are the identity on €t C @, €. Since
F and G are both exact, we may reduce to the case where 4 € C5;.

Now GFA = lim, 7<,A. This limit may be constructed as the kernel of a map from
[17<nA to itself. Consequently, we deduce that GF A lies in C5p. Splicing the long exact
sequence of the associated triangle, we deduce the existence of short exact sequences

0 — lIm"'{my117<nA} = T GFA — lim*{my7<, A} — 0

in the abelian category Cy. Since both of the inverse systems in question are eventually
constant, we get mGFA ~ mA. Thus, the cokernel of A — GFA lies in C>¢ and has
vanishing homotopy groups, and therefore is itself zero by the hypothesis.

To complete the proof, we wish to show that the natural map FGA — A is an equivalence
for any A = {A,} € €. It suffices to treat the cases A € C<o and A € Cs; separately. The
first case is obvious, since the sequence {A,} is eventually constant. In the second case, we
note that the above calculation shows that n,GA ~ m,A; for k > n, so that the natural
map T<,GA — A, induces an isomorphism on homotopy groups. Using the hypothesis, we
conclude that 7<,GA ~ A, so that FGA ~ A as required. O

The preceding notions may all be dualized. We thus obtain notions of right bounded and
right complete stable co-category (with t-structure). We denote the subcategory (J, €>_,
by €.

Remark 2.2.8. The notions of right and left boundedness (or completeness) are essentially
independent of one another. For example, the constructions introduced above for forming
left completions and left bounded subcategories commute with the analogous constructions
on the right. In particular we have (€7)* = (€7) = €"NE = @’ the stable subcategory
of t-bounded objects of C.

2.3 Abelian Categories

Some of the most important examples of stable oo-categories are given by (some variant of)
chain complexes in an abelian category. In this section, we will review Verdier’s theory of
derived categories from the oc-categorical point of view.

Throughout this section, we shall restrict our attention to Grothendieck abelian categories.
Recall that an abelian category is Grothendieck if it admits filtered colimits which are exact,
and has a small generator. In other words, a Grothendieck abelian category is a presentable
abelian category in which the class of monomorphisms is stable under filtered colimits.
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If A is a Grothendieck abelian category, then we shall call a complex K, in A injective
if it has the following property: for any inclusion of complexes i : M, C N, and any map
of complexes ¢ : M, — K,, the map ¢ extends to a map N, — K, provided that ¢ is a
quasi-isomorphism. If K, is injective, then each K, is an injective object of A. The converse
holds provided that K, is left bounded in the sense that K, = 0 for n > 0, but not in
general. The notion of an injective complex was introduced by Spaltenstein (see [32]), who
showed there are “enough” injective complexes in the sense that any complex K, admits a
quasi-isomorphic inclusion into an injective complex. His work has a natural interpretation
in the language of model categories: one may equip the category Ch(A) of chain complexes
in A with a Quillen model structure in which the weak equivalences are quasi-isomorphisms
and the cofibrations are chain maps that are termwise monic. In this case, a complex is
fibrant if and only if it is injective in the sense described above.

If M, and N, are complexes in A, then we may view Homcyia)(M., N,) as a bicomplex
of abelian groups. Passing to the associated complex and truncating, we obtain a complex
of abelian groups which is concentrated in (homological) degrees > 0. Via the Dold-Kan
correspondence, we may view this as a simplicial abelian group. Viewing the underlying
simplicial set as a space, we obtain a space which we may denote by Hom(M,, N,). We note
that 7, Hom(M,, N,) is simply the group of chain-homotopy classes of maps from M, to
Negn- ‘

We define the derived category D(A) of A to be the co-category having as objects the
injective complexes of A, and as morphisms the spaces Hom(M,, N,) defined above. Equiva-
lently, D(A) may be constructed as the simplicial localization of Ch(A), obtained by inverting
class of all quasi-isomorphisms.

There is a natural A-valued cohomological functor {m;},cz : D(A) — A. The functor
m; assigns to a complex K, the group m;K, = H™*(K,). This functor induces a t-structure
on D(A), which is given by setting D(A)so = {X € D(A) : (Vi < 0)[m;X = 0]} and
D(A)<o = {X € D(A): (Vi > 0)[m X = 0]}

Remark 2.3.1. Our definition does not conform to the standard terminology, according
to which it is actually the homotopy category h D(A) which is the derived category of A.
However, the shift in terminology seems appropriate since we will be much more concerned
with D(A) than with its homotopy category.

Proposition 2.3.2. Suppose that A is a Grothendieck abelian category. Then D(A) is left
and right complete, and its heart is equivalent to A. Furthermore, the formation of homotopy
groups in D(A) is compatible with the formation of filtered colimits, so in particular D(A)<o
15 stable under filtered colimits.

We note that D(A) may be obtained from the ordinary category of A-valued complexes
by a simplicial localization construction, which inverts all quasi-isomorphisms. A similar
remark applies to the subcategory D*(A): this is a simplicial localization of the ordinary
category of chain complexes concentrated in (homological) degrees < 0. Since any chain
complex has an injective resolution, we could just as well consider only the ordinary category
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of A™-valued chain complexes, where A™ C A denotes the full subcategory consisting of
injective objects. By the Dold-Kan correspondence, this is equivalent to the category of
cosimplicial objects of A™. Moreover, from this point of view the simplicial localization has
a very simple interpretation: it simply inverts morphisms between cosimplicial objects which
admit a homotopy inverse (in the cosimplicial sense). This makes it very easy to describe
D*(A) in terms of a universal mapping property:

Proposition 2.3.3. Let A be a Grothendieck abelian category, and let C be a stable co-
category equipped with a right-complete t-structure. Let F denote the oo-category of eract
functors F : DY(A) — € which are left t-ezact (that is, F(D(A)<o) € Cco ) and carry
injective objects of A into Cy. Let F denote the ordinary category of left ezact functors
A — Co. Then the restriction to the heart followed by truncation induces an equivalence
F-—-T7.

Proof. We first note that F' is equivalent to the ordinary category of additive functors
A™ — @y, the equivalence being given by restriction of functors to A™. To see this, we
note that a left-exact functor F' : A — €y can be reconstructed (in an essentially unique
way) from its restriction to .A“” since FI(X) ~ ker(F(I°) — F(I')), where I® is an injective
resolution of X. ‘

Essentially the same argument works to show that F is equivalent to the category of
additive functors A™ — €. Once again, the equivalence is given by restriction. We will
sketch the construction of a homotopy inverse to this equivalence. Suppose that we are
given an additive functor F : A™ — €, as above. Let A'Y denote the ordinary category of
cosimplicial objects of A™. Then applying F termwise gives a functor Fa from AN t0 the
co-category of cosimplicial objects of C<o. Passing to the geometric realization, we obta.m a
functor F* : .Aigj — C<o. N

Moreover, since quasi-isomorphisms in A2’ admit simplicial homotopy inverses, one can
easily check that ' carries quasi-isomorphisms into equivalences, so it induces a functor
F': D(A)<o — C<o. Using the fact that F is left exact, one shows that F” is left exact, and
therefore lifts uniquely to an exact functor D*(A) — €% which we shall denote also by F'.
By construction, F is left t-exact. Moreover, if I € A is mJectlve then it may be represented
by the constant cosimplicial object with value I in AZ5, which is carried by 7 into F(I).
Thus F'(I) = F(I) € €. In general, F” is a right-derived functor of F and does not carry A
into Cp; however, one can check easily from the definition that 750 F'(A) = F(4) € €. O

Example 2.3.4. Any left-exact functor G : A — A’ between Grothendieck abelian cate-
gories lifts naturally to a right-derived functor RG : DY(A) — D (A’). Often RG has a
natural extension to all of D(A). For example, suppose that G is the right adjoint to some
- exact functor F: A" — A. Then F induces a functor LF : D(A’) — D(A). The adjoint
functor theorem can then be applied to construct a right adjoint to LF, which coincides
with RG on DH(A).

Example 2.3.5. Let §,, be the stable oo-category of spectra, with its natural t-structure.
Then the heart of 8., is the category A of abelian groups. The identity functor A — A
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lifts to a functor D(A) — 8, which is given by taking a complex of abelian groups to the
corresponding “generalized Eilenberg-MacLane spectrum”.

Next, we ask under what conditions a stable oo-category €, equipped with a t-structure,
has the form D(Cy):

Proposition 2.3.6. Let C be a presentable stable oo-category equipped with an admissible
i-structure.

e The heart Cy of C is a presentable abelian category.

o If C<o is stable under the formation of filtered colimits, then Co is a Grothendieck
abelian category.

e Suppose that C<q is stable under the formation of filtered colimits and that

(€<

n20

contains only zero objects (so that C is right-complete). Then the functor D (Cy) — €
supplied by Proposition 2.8.3 is an equivalence if and only if mo Home(X, I[n]) = 0 for
each X € Cq, each injective object I € Cy, and each n > 0.

Proof. Since the t-structure is admissible, €5, C € is generated under colimits by a set of
objects and is therefore presentable. Since Cp is a localization of Cs, it follows that Cq is
presentable.

Let us now consider the question of whether or not €y is a Grothendieck abelian category.
Since €, is presentable, we are interested in the condition that a filtered colimit of short
exact sequences 0 — A, — B, — C, — 0 remains exact. Let A, B, and C denote the
corresponding filtered colimits in €. Then mpA, m B, and 7pC are the corresponding filtered
colimits in Cy. To prove the exactness of the sequence 0 — mA — B — mC — 0, it
suffices to prove that mC = 0. This is certainly the case if C' € €;, which follows from the
assumption that €, is stable under filtered colimits.

Let us now consider the question of whether or not the functor F' : D*(Gp) — €CF is
fully faithful. The condition that my Home(X, I{n]) = 0 for X € €5, n > 0 is equivalent to
the assertion that Hommp+ e,y (X, I) = Home(X, I) as spectra. Thus, the vanishing condition
follows from the assumption that F is fully faithful. For the converse, let us suppose that the
vanishing condition holds; we will show that the natural map of spectra Homp+ e,y (X,Y) =~
Home(X,Y) is an equivalence for all X, Y € DT (Cyp).

We note that, by the construction of F', we have natural isomorphisms mFX ~ m;X in
Co. Since both D*(€p) and C* are right-complete, we see that X = colim{r>_,X} and

FX = colim{rs_,FX} = colim{Fr>_nX}.
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Thus we may reduce to the case where X is bounded. Working by induction, we may reduce
to the case where X is concentrated in a single degree. Shifting, we may suppose that
X e eo.

Replacing ¥ by Y [—n] for n >> 0, we may suppose that Y is representable by an injective
complex concentrated in (homological) degrees < 0. Let I*® denote the associated cosimplicial
objects of (‘,’ionj. Then Y is the geometric realization of the cosimplicial object I*, and by
construction F'Y is the geometric realization of F'I*. We may therefore reduce to the case
where Y € G, But we have already noted that the case X € G, Y € G ig equivalent to
the vanishing hypothesis given in the theorem.

To complete the proof, we show that if F' is fully faithful then it is also essentially
surjective. Let X € C*; we wish to show that X belongs to the essential image of I". First
suppose that X € €. We work by induction on the number indices i for which X # 0.
If X has only one nonvanishing homotopy group, then X belongs to some shift of Gy and
obviously lies in the essential image of F. Otherwise, we may suppose that there exists a
triangle X' — X — X", where X’ and X" belong to the essential image of F. Now X
may be described as the kernel of a map X” — X’[1]. Since F is fully faithful, the map
X" — X'[1] is obtained by applying F' to some map Y” — Y’[1]. Then the kernel of this
map is preimage for X under F.

In the general case, we may write X as the colimit of the sequence {7>_,X}. Each term
of this sequence lies in €%, so we may write T>_nX =~ FY,. Let Y be the colimit of the
sequence Y, in D(€p). Then by checking on homotopy groups, we see that Y € D™ and the
natural map X — FY is an equivalence. O

Remark 2.3.7. For X, € Gy, the group mp Home(X, I[n]) is closely related to the Yoneda-
Ext group Extg (X,I). If € is the derived category of its heart, then these two groups
coincide. Proposition 2.3.6 asserts that the converse holds (at least for left-bounded objects)
provided that mo Home(X, I[n]) has one property in common with Extg (X,I): it must
vanish when 7 is injective and n > 0.

Remark 2.3.8. If the conditions of the last clause of Proposition 2.3.6 are satisfied, then €
is equivalent to D(Cy) if and only if € is left complete.

2.4 A,-Ring Spectra

Let C be a stable oo-category, and let X € € be an object. Since € is naturally enriched
over spectra, we can extract a spectrum Ende(X) whose Oth space is given by Home(X, X).
By analogy with the theory of ordinary abelian categories, we would expect that Ende(X)
has the structure of an associative ring, in some reasonable “up to homotopy” sense. The
correct way of describing the situation is to say that Ende(X) is an Ay-ring spectrum.

We shall not give the precise definition of an A.-ring spectrum here. Let us simply
remark that it is not sufficient to consider a “monoid object” R in the homotopy category
of spectra with respect to the smash product (which we shall denote by ® to be consistent
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with our earlier notation). This gives rise to the notion of a homotopy associative ring
spectrum which is too crude for sophisticated algebraic purposes. Homotopy associativity is
the assumption that the two natural maps R ® R ® R — R (given by iterated composition)
are homotopic to one another. For most applications one needs also to know the homotopy,
and to know that this homotopy satisfies certain higher associativity conditions of its own.

The appropriate associativity conditions were first formulated by Stasheff (see [34]) in
terms of certain higher-dimensional polytopes which are now called Stasheff associahedra.
A simpler formulation was later given in terms of operads, leading to the definition of an
Aco-Ting spectrum as an algebra over an appropriate Ay -operad. This point of view has the
merit that it can be used to describe other, more subtle types of algebraic structure (such as
the notion of an E,-ring spectrum obtained from the “little n-cubes operad”, which governs
the structure of n-fold loop spaces).

In recent years, it has become possible to give an even simpler approach to the theory of
Ag, ting spectra, based on new models for the stable homotopy category which are equipped
with a smash product functor which is associative (and commutative) on the nose (see, for
example, [9]). In one of these settings, one can speak of spectra equipped with multiplications
which are strictly associative, and this turns out to be equivalent to requiring associativity
up to all higher homotopies.

We will be content to simply describe A, -ring spectra and how to work with them. The
intuition is that they behave like a somewhat sophisticated version of associative rings.

The first thing to be aware of is that an A, -ring spectrum A has an underlying spectrum.
This spectrum has homotopy groups {m;A}icz, all of which are abelian. Moreover, the
“ring structure” on A induces a ring structure (in the ordinary sense) on ®;czm;A, which is
compatible with the Z-grading. In particular, mA is an ordinary associative ring and each
m; A has the structure of a bimodule over mpA.

An A -ring spectrum is said to be connective if its underlying spectrum is connective:
that is, if mA = 0 for 7 < 0. Just as a connective spectrum can be thought of as a space
equipped with an addition which is commutative and associative up to homotopies of all
orders, a connective A,-ring spectrum can be thought of as a space equipped with an
addition and multiplication which are commutative (for the addition only) and associative
(for both the addition and the multiplication) up to all higher homotopies.

Most of the A,-ring spectra which we shall meet will be algebras over the ordinary
commutative ring Z. This implies that there exists a map of A-ring spectra f : Z — A
(which is not automatic: for example, such a map does not exist when A is the sphere
spectrum). However, f does not determine a Z-algebra structure on A; one also needs to
know that f is central in some sense. In the context of structured ring spectra this is not
simply a condition on f, but consists of extra data which must be supplied.

Connective Aq-Z-algebras, it turns out, are easy to think about. To begin with, the
underlying spectrum of a Z-algebra A is not arbitrary, but must be equipped with the struc-
ture of a module over Z. This forces the underlying spectrum of A to be a “generalized
Eilenberg-MacLane spectrum” (that is, equivalent to a product of Eilenberg-MacLane spec-
tra). In the case where A is connective, if we think of the underlying spectrum as a space
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X with a coherently commutative addition law, then giving a Z-module structure on A is
essentially equivalent to giving a model X where the addition is commutative (and asso-
ciative) on the nose. In the case where A is a connective Ay -ring spectrum, a Z-algebra
structure on A allows us to model A using a topological space which is equipped with an
addition and multiplication that are both associative and commutative (for the addition) on
the nose. In other words, a connective A,-Z-algebra is more or less the same thing as an
associative topological ring. If we use simplicial sets in place of topological spaces as models
for homotopy theory, then we obtain an analogous result: a connective Ay-Z-algebra is more
or less the same thing as a simplicial (associative) ring.

For any A,.-ring spectrum A, there exists a good theory of left A-module spectra, or simply
left A-modules. The collection of left A-modules forms a presentable, stable co-category M 4.
If M is an A-module, then M has an underlying spectrum and we will write m; M for the
homotopy groups of this underlying spectrum. We call an A-module M n-connected if
mM = 0 for i < n, and n-truncated if m;M = 0 for 1 > n. A morphism f : M — N of left
A-modules is said to be n-connected if its cokernel is n-connected. If A is connective, then the
collections {M : (Vi > 0)[m;M = 0]} and {M : (Vi < 0)[m;M = 0]} determine an admissible
t-structure on M. With respect to this t-structure, M, is left-complete and right-complete,
and the formation of homotopy groups is compatible with the formation of filtered colimits.
- The heart of M, is equivalent to the abelian category of discrete left modules over the ring
- mpA. For any left A-module M, the direct sum @;m;M forms a graded left module over
the graded ring @;mA. We say that M is connective if m;M = 0 for i < 0, and discrete
if ;M = 0 for < # 0. In the case where A is a connective Z-algebra, we can model A by
a topological ring, and one can think of connective A-modules as topological modules over
this topological ring. When A is a discrete ring, the co-category of A-module spectra is the
derived category of the (Grothendieck) abelian category of discrete A-modules. If K is a
complex of (ordinary) A-modules, thought of as an A-module spectrum, then its homotopy
groups are given by mK = H™*(K).

The oo-category of left A-modules has enough compact objects, which are called perfect
A-modules. The class of perfect A-modules form a stable subcategory Mﬂf C M4 containing
A, and My ~ Ind(Mﬂf ). We call an A-module finitely presented if it lies in the smallest stable
subcategory of M, containing A. An A-module is perfect if and only if it is a retract of a
finitely presented A-module.

Example 2.4.1. If A is a discrete associative ring, then an A-module is finitely presented
if it can be represented by a finite complex of finitely generated free A-modules, and perfect
if it can be represented by a finite complex of finitely generated projective A-modules.

Let C be any stable oo-category, and let X € C. As suggested above, the spectrum
Ende(X) has an Ay-ring structure. The full subcategory of € consisting of the object X
is equivalent to the full subcategory of M, consisting of the trivial A-module A. This
equivalence extends to an exact, fully faithful functor F (a kind of “external tensor product
by X”) from the co-category of finitely presented A-modules to €. If € is stable under the
formation of retracts, then F' extends uniquely to M‘;f (and remains exact and fully faithful).
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If € is stable under the formation of sums, then F' extends to an exact functor on M4, which
is fully faithful provided that X is a compact object of €.

There is a theory of right A-module spectra which is entirely dual to the above theory
of left A-modules spectra; it may also be regarded as the theory of left modules over an
opposite Ax-ring spectrum A%. As with ordinary algebra, if M is a right module over A
and N is a left module over A, then one can define the tensor product M ®4 N. In general,
M @4 N is merely a spectrum with no A-module structure. The functor (M, N)+— M ®4 N
is exact and colimit-preserving in both variables. There is a spectral sequence for computing
the homotopy groups of M ®4 N, with Ey-term given by E%* = Torf' (me M, Ty N). Here
the notation is intended to indicate that one computes the Tor,-group in the context of
graded modules over a graded ring, and consequently it comes equipped with a natural
grading: E%? is the gth graded piece. This spectral sequence is strongly convergent provided
that A, M, and N are connective. In particular, if A, M, and N are connective, then the
spectrum M ®4 N is connective, and mo(M ® 4 N) is naturally isomorphic to the ordinary
tensor product TorJ*(meM, moN). If A is discrete, then ®, is the left-derived functor (in
either variable) of the ordinary tensor product, so that if M and N are discrete also we have
(M ®4 N) =~ Tor?(M, N).

If A — B is a morphism of Ay-ring spectra, then we may regard any B-module as
an A-module by restriction of structure. This restriction functor has both a left adjoint
and a right adjoint (and is therefore exact), which we shall denote by M +— B ®4 M and
M — Homyu(B, M).

Remark 2.4.2. The standard notation in homotopy theory is to write B A4 M, rather than
B ®4 M. We shall instead employ the usual algebraic notation, which we feel is easier to
read and better brings out the analogy with the classical algebraic notion of tensor product.
However, we warn the reader to keep in mind that our tensor products are not the usual
tensor products of algebra but suitable left-derived analogues.

2.5 Properties of A, Ring Spectra and their Modules

Let A be a connective A, -ring spectrum. We are going to discuss some basic facts about
the stable oo-category of left A-modules. We call an A-module free if it is a direct sum of
(unshifted) copies of A. We call a map N — N’ of connective A-modules surjective if it
induces a surjection on myg.
Proposition 2.5.1. Let M be a connective left A-module. Then the following are equivalent:
e The module M is a retract of a free A-module (D,.; A.
e For any surjection f : N — N' of connective lefi A-modules, the induced map wo Hom4 (M, N) —
7o Hom (M, N') is surjective.

Proof. It is clear that the first condition implies the second. For the converse, choose a
surjection N — M with N free, and apply the surjectivity assumption to the identity in
Hom(M, M). a
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We shall call a connective left A-module projective if it satisfies the above conditions.

Theorem 2.5.2 (Derived Lazard Theorem). Let R be a connective Ax-1ing spectrum,
and let M be a connective left R-module. The following conditions are equivalent:

1. The module M is a filtered colimit of finitely generated free modules.
The module M is o filtered colimit of projective modules.

If N is a discrete right R-module, then N @ g M 1is discrete.

The moR-module mgM s flat, and the natural map Torg"R(m-R, ToM) — mM is an
1somorphism for each i > 0.

5. The moR-module moR ®gr M s discrete and flat (in the sense of ordinary commutative
algebra).

Proof. It is obvious that (1) implies (2). :

If M is a free left R-module, then for any right R-module N, N ® g M is a direct sum
of copies of IV, hence is discrete provided that N is discrete. Since the formation of tensor
products is compatible with filtered colimits and filtered colimits of discrete R-modules are
discrete, we deduce that (2) implies (3).

Suppose that (3) is satisfied. We may identify discrete right R-modules with discrete
right moR-modules. If N is discrete, then the discrete module N ®z M is equivalent to
Tord*®(N, mgM ). It follows that the functor Tor(’)’”R(o, moM) is an exact functor so that mo M
is flat over mp 2. Now one can prove by induction on ¢ that for any connective right R-module
N, the natural maps Torg®®(m;,N, moM) — m;(N ®g M) are isomorphisms. Applying this in
the case N = R, we deduce (4).

Any discrete right R-module may be considered as a mpR-module, and we have m;(N Qg
M) = (N @ror moR ®r M) = Torf*?(N, neR ®r M). Thus (3) is equivalent to (5).

To complete the proof, it will suffice to show that (4) implies (1). Let € denote the
oo-category of finitely generated free left R-modules equipped with maps to M. Then € is
essentially small, and gives rise to a diagram in the category of left R-modules which has
a colimit M’. By construction there is a natural map ¢ : M’ — M. We will complete the
proof by showing that if the (4) is satisfied, then € is filtered and ¢ is an equivalence.

It is clear that any two objects of € admit a map to a common third object of C (use
the direct sum). To complete the proof, it suffices to show that for any K, K’ € C and any
element n : 8" — Home(K, K'), there exists a morphism K’ — K™ in € such that the
image of n in 7, Hom(K, K™) vanishes. For n = 0, this follows from the classical version of
Lazard’s theorem (see [21]); hence we shall assume n > 0. The module K is a direct sum of
finitely many copies of R. Arguing iteratively, we can reduce to the case K = R. In this case,
Home(K, K') may be identified with the homotopy fiber of the structural map K’ — M. The
image of 7 in 7, K’ lies in the kernel of the natural map 7, K’ — 7,M = Torg"R(WnR7 moM).
Since moM is a filtered colimit of free mpR modules, it follows by a direct limit argument
that there exists a free myR-module K, and a factorization mo K’ — Ky — M such that the
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image of 1 in Torj*®(r, R, moK') vanishes in Tor]*®(m, R, moKyp). Using the freeness of K

and K, we can lift Ky to a free R-module K” and obtain a factorization X' — K" — M,
such that the image of 7 in m, K" vanishes.

Now the exact sequence 7,11 K" — 111 M — 7, Home(K, K”) — 7, K" shows that 7 is
the image of a class 7 € mp M = T4 1 R®p,rmoM. Applying a direct limit argument again,
we can find a factorization K” — K" — M such that 7 is in the image of 7, 1 K" — M. It
then follows that the image of n in 7, Home(K, K™) vanishes, as desired.

It follows that C is filtered. To complete the proof, we will show that ¢ is an equivalence.
Since we have Torj®®(m, R, moM) ~ m,M and Torj°®(m,R, moM') =~ m,M’, it will suffice to
show that ¢ induces an isomorphism ¢ : moM’ — meM. It is obvious that mo¢ is surjective
(consider free modules of rank one). To prove injectivity, we represent any given element
of mgM' by ¢ € ngK for some finitely generated free left R-module K equipped with a
map to M. Now if the image of ¢ in meM vanishes, then by Lazard’s theorem there is a
finitely generated free left mpR-module K and a factorization moK — Kj — mpM such that
¢ vanishes in K|. Using the freeness of K and K, we lift the factorization to a diagram
K — K' — M. Thus the natural map moK — moM’ factors through moK’ and therefore
kills (. O

A connective left R-module satisfying the above hypotheses will be said to be flat. In
general, if M is a flat left R-module, then the “global” properties of M as an R-module are
determined by the “local” properties of mgM as a module over the ordinary ring moR. As an
illustration of this principle, we note that:

Proposition 2.5.3. Let R be o connective Ax-ring spectrum. A flat left R-module M is
projective if and only if moM 1is a projective mo R module.

Proof. We first suppose that moM is free. In this case, we may choose generators for mpM
over moA, and lift these to obtain a map f : ®;A — M which induces an isomorphism on .
Since both the source and target of f are flat, it follows that f is an equivalence so that M
is free.

In the general case, we choose a surjection from a free module onto meM whose kernel
is also free (this can be achieved using an “Eilenberg-swindle” argument), and lift this to a
surjection f : F' — M. Since M is flat and f induces a surjection on homotopy groups in
each degree, we deduce that F’ = ker f is flat and that

0— mF = mF — mpM — 0

is exact. Since moM is projective, the inclusion moF’ C mF is split by a morphism which
lifts to a map ¢ : I — F'. Let ¢ denote the natural map F* — F. Then ¢ o % induces
the identity on moF”, and therefore it is homotopic to the identity on F” since F” is free. It
follows that the triangle F — F — M is split, so that M is retract of F. Since F' is free,
M is projective. U

Proposition 2.5.4. Let A be a connective Ag-ring spectrum and let M be a flat left A-
module. The following conditions are equivalent:
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e For any nonzero right A-module N, the spectrum N @ 4 M s nonzero.
e The mpA module moM is faithfully flat over A.

Under these circumstances, we shall say that M is faithfully flat over A. Let f: A— B
be a morphism of A -ring spectra. We say that B is (faithfully) flat if it is (faithfully) flat
as an A-module (we really have two notions, depending on whether we choose to view B as
a left or as a right A-module: unless otherwise specified, we regard B as a left A-module}.

We now discuss some finiteness conditions on left A-modules. We have already remarked
that M, has enough compact objects, and that these are called perfect A-modules. We will
characterize the perfect A-modules as those which admit preduals. We first mention the
following general principle:

Proposition 2.5.5. Let A be an Ay -ring spectrum. The following oco-categories are natu-
rally equivalent:

1. The oo-category of left exact functors M4 — 8§ which commute with filtered colimits.

2. The oco-category of exact functors from My into the oo-category Soo of spectra which
- commute with filtered colimits.

3. The oo-category of right A-modules.

Proof. Let €1y, C(g), and C(s) be the three oo-categories described in the statement of the
proposition. We give a sketch of the construction of functors which give rise to the equiva-
lences G(l) o~ G(z) ~ 6(3).

First of all, composition with the functor Q* : 8§, — § (passage to the zeroth space)
gives us a “forgetful functor” ¢ : €y — C(). The crucial observation is that since M, is
stable, ¢ is not as forgetful as it looks. In fact, any left-exact functor F': M4 — 8 may be
uniquely “enriched” to an exact functor Fp : M4 — 8, with F' =~ Q> o F,,. We first note
that M4 has a zero object. Since F is left exact, F'0 is a final object * € 8. The unique maps
0 — M give rise to maps * ~ F0 — FM for each M € My, so that F' admits a natural
factorization F' : M4 — 8, through the co-category of pointed spaces. _

We now note that since M is the n-fold loop space of M[n] in Ma, FM ~ Q"FM]n].
In other words, the functor FM comes equipped with a sequence functorial deloopings of
the spaces FM. We may now define the functor Fi, by letting FooeM be the spectrum
corresponding to this sequence of deloopings (F'M, FM [1],-...). Since F is left exact, F is
exact. Moreover, F will commute with filtered colimits if and only if F' commutes with
filtered colimits. This proves the equivalence of €(;) and €5y (not that so far, we have used
only the stability of My).

We note that there is a natural functor €3 — C(p), which carries a right A-module
N to the functor M ~ N ®4 M. The inverse functor € — €3 is given by evaluation
at the identity object A. More specifically, we note that A is a right A-module in the
oo-category of left A-modules. Consequently, if F' € €y, then F(A) is a right A-module
spectrum. Moreover, one can construct a natural transformation F(A)® 4 M — F(M). This
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transformation is an equivalence when M = A. Since both sides are exact as a functor of
M, we deduce that this map is an equivalence whenever M is finitely presented. Finally, if
F commutes with filtered colimits, then both sides are an equivalence in general. (]

Corollary 2.5.6. Let A be an Ay -ring spectrum, and let M be a left A-module. Then M
is perfect if and only if there exists a right A-module M™* and an identification of spectrum-
valued functors Hompg, (M, e) =~ M* @ e.

Proof. Apply Proposition 2.5.5 to the functor Homyy, (M, e). O

In particular, applying both sides to the left A-module A4, we see that M* = Hom(M, A)
is the dual of M in the usual sense.
We next discuss a somewhat weaker finiteness condition.

Proposition 2.5.7. Let A be a connective Ao-ring spectrum, let M be a left A-module, and
let n be an integer. The following conditions are equivalent:

1. There ezists a finstely presented left A-module N and a morphism N — M which
induces an equivalence T<y N ~ T<, M.

2. There exists a perfect left A-module N and a morphism N — M which induces an
equivalence T<p N = 7<n M.

3. There exists a finitely presented left A-module N and an equivalence T<nN = T<, M.
4. There erists a perfect A-module N and an equivalence T<pnN = 1<y M.

5. The n-truncated A-module T<, M is a compact object of (M4)<n.

Proof. Tt is clear that (1) = (2) = (3) = (4). Since (M4)<y, is stable under filtered colimits,
the implication (4) = (5) follows from the fact that Homy, (M, M) = Homy, (T<n M, M')
when M’ is n-truncated.

Suppose that (5) is satisfied by M. We first claim that M is k-connected for sufficiently
small k. Since 7<, M is the filtered colimit of the A-modules 7>4(7<n M) as k — 00, it follows
from (5) that the identity map from 7<,M to itself factors through 7sk(7<nM) for some
k. Thus the identity map on m,, M factors through 0 for m < k, which implies that M is
(k — 1)-connected.

We now prove that for all m < n, there exists a finitely presented left A-module N,, and
a map ¢, : N, — M which induces an isomorphism on homotopy groups in degrees < m.
If m is sufficiently small, then M is m-connected and we may take N,, = 0. The proof in
general goes by induction on m. Suppose that we have constructed ¢p—1 : Njpmy — M, and
let K denote the cokernel of ¢,_;. Then K also has the property stated in (5). Since m < n,
we deduce that 7, K is a compact object in the ordinary category of discrete moA-modules.
Thus there exists a presentation

Fo— Qg — 7K —0
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for mm K, where Fy and Qq are free mgA-modules. We may lift the generators of Py and Q,
to obtain a triangle (not necessarily exact) of left A-modules

Pim) % Qim] —» K

Since Np,_; — M induces an isomorphism on 7,_;, the long exact sequence implies
that 7 M — m,K is surjective. Since @ is free, Q[m] — K factors through some map
8 : Q[m] — M. Since the composition P[m] — Q[m] - M — K is zero, P[m] — M factors
through some map v : P[m] — Nj,—1. We let N, denote the cokernel of

P[m] vey' Qm] & Np_1-

By construction, composition with the map (—6) @ ¢y : Q[m] & N,y — M kills
¥ @, and therefore (—0) ® ¢y, factors through N,,. A simple diagram chase shows that
any factorization N,, — M induces an isomorphism on homotopy groups in dimension < m.
This completes the induction, and taking m = n completes the proof of (5) = (1). O

We will say that an A-module M is perfect to order n if it satisfies the equivalent con-
ditions of Proposition 2.5.7. We shall say that M is almost perfect if it is perfect to order
n for all n. We note that by definition, the class of modules which are perfect to order n is
stable under finite colimits. Thus the class of almost perfect modules is stable under finite
colimits and shifts, and therefore constitutes a stable subcategory of M.

Remark 2.5.8. We have now discussed a great number of finiteness conditions on A-
modules, and it seems worthwhile to discuss the relationships between them. An A-module
is finitely presented if it can be built using only finitely many cells, and perfect if it is a
retract of a finitely presented module. An A-module is almost perfect if it admits a cell
decomposition in which the dimensions of the cells tend to oo: in other words, we allow
infinitely many cells, but only finitely many cells of dimension < n for any fixed n. Finally,
we say that an A-module is perfect to order n if it can be built using only finitely many cells
of dimension < n + 1 (but possibly more cells of larger dimension).

‘The notion of perfect to order n will be needed for certain approximation arguments later
in this paper, to eliminate Noetherian hypotheses. The reader who is not interested in these
applications should feel free to ignore this slightly technical notion.

We now discuss Noetherian conditions on A.-ring spectra. Recall that an ordinary ring
R is said to be left coherent if every finitely generated left ideal of R is finitely presented.

Definition 2.5.9. A connective A-ring spectrum A is left Noetherian (left coherent) if mpA
is left Noetherian (left coherent), and each 7,4 is a finitely presented left mqA-module. If
A is coherent and M is a left A-module, then we say that M is coherent if each 7, M is a
finitely presented as a discrete module over mpA.

We note that if A is left coherent, then the coherent left A-modules form a stable sub-
category of M4 which is stable under the formation of retracts. This subcategory includes
A, and therefore includes all perfect A-modules.
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Proposition 2.5.10. Suppose that A is left coherent. Let M be an A-module. Then M 1is
almost perfect (perfect to order n) if and only if the following conditions are satisfied:

e Form<« 0, 1,M =0.
e ForallmeZ (m<n), mpM is a finitely presented moA-module.

Proof. Suppose that M is perfect to order n. Then there exists a perfect A-module N and
an equivalence 7<, M ~ 7<,N. Replacing M by N, we may suppose that M is perfect. Then
the first condition is clear and the second condition holds since M is coherent.

Now suppose that m, M is finitely presented over mgA for m < n, and vanishes for m < 0.
The proof that M is perfect to order n is identical to the proof of the implication (5) = (1)
of Proposition 2.5.7. O

Proposition 2.5.11. Let A be a connective Ay ring spectrum. The following are equivalent: |

1. A is left coherent.
2. For any almost perfect M € My, the truncation 1>oM is almost perfect.

Proof. The implication (1) = (2) follows from the description of almost perfect modules
given in Proposition 2.5.10. Conversely, suppose that (2) is satisfied. We note that the
first non-vanishing homotopy group of any almost perfect A-module is a finitely presented
module over 7oA in the usual sense. Applying (2) to the module A[—n], we deduce that 7, A
is a finitely presented mpA-module. To complete the proof, it suffices to show that meA is
left coherent.

Clearly, (2) implies that mpA is almost perfect as an A-module. From this we may deduce
that any almost perfect mpA-module is almost perfect as an A-module. Thus, we may replace
A by mpA and reduce to the case where A is discrete. :

Let I C A be a finitely generated ideal. Then [ is the image of some map ¢ : A" — A;
we wish to show that the kernel of ¢ is finitely generated. But the kernel of ¢ is 750K, where
K is the kernel of ¢ in M4. Since K is perfect, condition (2) implies that 750K is almost
perfect, hence myT>oK is finitely presented. O

If A is left coherent and M € M, then we shall say that M is coherent if 7, M is a finitely
presented module over mpA for each n. Equivalently, M is coherent if 75>, M is almost perfect
for each n € Z. The property of coherence is not stable under base change. However, it
is stable under a (right)-flat base change A — B of coherent (connective) A-ring spectra:
this follows immediately from the characterization given in Proposition 2.5.10.

Proposition 2.5.12. Let A be a connective A-ring spectrum. Let M be a flat left A-module
which is almost perfect. Then M is perfect and projective.

Proof. We note that mpM is a finitely presented, flat mgA-module. Consequently, oM is
projective, so that M is projective. We may choose a surjection from a finitely generated
free module F onto M; the projectivity of M implies that M is a retract of F'. Since F' is
perfect, so is M. ' O
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In the future, we will need a slight generalization of Proposition 2.5.12. We will say that
a left A-module M has Tor-amplitude < n if, for any discrete right A-module IV, the groups
(N @4 M) vanish for i > n.

Proposition 2.5.13. Let A be a connective A -ring spectrum.
o If M is an A-module of Tor-amplitude < n, then M[k] has Tor-amplitude < n + k.

o et M — M — M" be an exact triangle of A-modules. If M’ and M" have Tor-
amplitude < n, then so does M.

o If M is almost perfect and has Tor-amplitude < n, then M is perfect.

Proof. The first two claims are obvious. For the third, we first shift M so that it is connective,
and then work by induction on the Tor-amplitude of M. Choosing a surjection F' — M, we
note that if M has Tor-amplitude < n and n > 0, then the kernel K of the surjection is
connective and of Tor-amplitude < {n—1). In this fashion we reduce to the case where M is
connective of Tor-amplitude < 0. Then M is flat and we may apply Proposition 2.5.12. [

2.6 E.-Ring Spectra and Simplicial Commutative Rings

Just as commutative algebra provides the foundation for classical algebraic geometry, our the-
ory of derived algebraic geometry will require some kind of “derived commutative algebra”,
in which commutative rings are replaced by an appropriate homotopy-theoretic generaliza-
tion. However, this turns out not to such a simple story, since there are several plausible
candidates for this generalization. The objective of this section is to explain what these
candidates are and how they are related to one another, and to explain why we believe that
one formalism (that of simplicial commutative rings) provides the proper foundation for the
theory that we will develop later.

In the last two sections, we have discussed A.-ring spectra, which are a good homotopy-
theoretic generalization of associative rings. However, in algebraic geometry we need to deal
with commutative rings, and their homotopy-theoretic generalizations are considerably more
subtle. Fix an ordinary commutative ring R. Then there exist (at least) three homotopy-
theoretic generalizations of the notion of “commutative R-algebra”:

e One can consider topological commutative rings endowed with an R-algebra structure.
These form an co-category which we shall denote by SCRp,. Objects of S€Rp, can
also be modelled by simplicial commutative R-algebras. The category of simplicial
commutative R-algebras has a Quillen model structure in which the weak equivalences
and the fibrations are those maps which are weak equivalences or fibrations on the
underlying simplicial sets. We will discuss this co-category at great length in the next
section (and throughout the remainder of this paper).
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e One can consider commutative differential graded R-algebras. More precisely, one
can consider a simplicial localization of the ordinary category of differential graded
R-algebras which inverts quasi-isomorphisms. There exists a Quillen model structure
on the category of differential graded R-algebras, with quasi-isomorphisms as weak
equivalences and cofibrations given by retracts of iterated cell attachments. If R is a
Q-algebra, then the fibrations for this model structure are simply the surjective maps.
In the general case, there seems to be no easy characterization of the fibrant objects,
and the model structure is practically useless for computations. In any case, we shall
denote the underlying oo-category by DGAR.

e One can consider an oc-category €Jg) of Eoo-R-algebras. This is a slice oo-category
of a larger co-category €J of F-ring spectra. As with A-ring spectra, there are
multiple ways of defining £J. One can consider spectra equipped with the structure of
an algebra over an appropriate E-operad, or one can consider strictly commutative
and associative monoid objects in an appropriate symmetric monoidal model category
of spectra. Every ordinary commutative ring may be regarded as an Ey-ring spectrum,
and one can then define £Jg,; as the oo-category of objects A € £J equipped with a
map R — A.

In general, we have functors SERg/ 4, DSAR A r/. If Ris a Q-algebra, then 9 is an
equivalence of oo-categories, ¢ is fully faithful, and the essential image of ¢ consists of the
connective objects of DGAR ~ EJg; (that is, those algebras A having mA = 0 for i < 0).
If R is not a Q-algebra, then neither ¢ nor ¥ nor % o ¢ is fully faithful and the situation is
much more complicated. In this case, the oo-category DGApg is poorly behaved: it is both
difficult to compute with (for reasons explained above), and conceptually unsuitable because
it is not clear what notion it is intended to model. However, both 8€Rg; and EJr, have
conceptual interpretations:

e Connective objects of £€J are spaces equipped with addition and multiplication laws
which are commutative, associative, and distributive up to coherent homotopy.

e Objects SCR are spaces equipped with addition and multiplication laws which are
commutative, associative and distributive on the nose: that is, they are topological
commutative rings.

From this point of view, the functor 6 = ¢ o ¢ : S€R — €7 is easy to understand. We
note that there are two obvious reasons why 6 cannot be an equivalence: first, the initial
object of 8CR is the ordinary commutative ring Z, so that the essential image of 6 consists
entirely of Z-algebras (in contrast, the initial object of £J is the sphere spectrum, which is
very nondiscrete: its homotopy groups are the stable homotopy groups of spheres). Second,
the essential image of @ consists only of connective objects. But § is not even an equivalence
onto the co-category £Jz, of connective Z-algebras. Objects of €]z, may be thought of as
topological spaces equipped with a strictly commutative addition, and a multiplication which

46




is commutative (and distributive over addition) up to all higher homotopies. It turns out
that, in contrast to the associative case, this is substantially weaker than the requirement of
a strictly commutative multiplication.

So we are faced with two plausible candidates for our theory of “generalized rings”: F..-
ring spectra and simplicial commutative rings. Which is the better notion? The answer
depends, of course, on what we want to do. The notion of an i, -ring spectrum is extremely
useful in stable homotopy theory. Having observed that the complex K-theory K(X) of any
space X has a commutative ring structure, one would like to explain this by saying that, in
some sense, K-theory itself is a commutative ring. The theory of E,-ring spectra provides
the correct language for describing the situation: K-theory and many other generalized
cohomology theories of interest may be endowed with E, -structures.

While the notion of an Ey-ring spectrum is useful for applying algebraic ideas to homo-
topy theory, simplicial commutative rings seem better suited for the dual purpose of bringing
homotopy theoretic ideas into algebra. If we take the point of view that our ultimate inter-
est is in ordinary commutative rings, but some constructions such as (left derived) tensor
products seem to force more general objects upon us, then the co-category SCR seems better
suited to our needs: it is fairly conservative generalization of the notion of a commutative
ring, yet sufficiently general for our purposes.

[t is our opinion that the theory of simplicial commutative rings provides the appropriate
notion of “generalized ring” for use in derived algebraic geometry. Here are some advantages
of this choice:

e It does not seem appropriate to employ nonconnective ring spectra in constructing
the basic “affine building blocks” of derived algebraic geometry. If we were work-
ing with E-ring spectra, we would need to restrict our attention to the connective
objects. However, in SCR the connectivity condition is automatically satisfied. (We
note, however, that in characteristic zero the use of nonconnective algebras leads to a
good notion of weakly affine algebraic stacks which includes, for example, the classi-
fying stack for a unipotent algebraic group (see [35]). However, it is our opinion that
non-connective F-ring spectra do not provide the correct approach to this notion in
positive characteristic. We will discuss a version of this notion in [23].)

e Objects of 8CR are much easier to describe and to compute with than objects in &7,
or even £Jz;.

e Though it is possible to set up the formal aspects of the theory of algebraic geometry in
the context of E-ring spectra, it seems that many constructions of algebro-geometric
interest cannot be carried out in this setting. For example, we do not know how to
define an analogue of the algebraic group SLj over the sphere spectrum. The definition
seems to require the existence of a determinant for a rank 2-module, and it precisely
the existence of these kinds of constructions which distinguishes SCR from £J (see
Remark 2.6.5).
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e In classical algebraic geometry, the affine line Ay over a scheme S is flat over S. This
key basic fact fails in the E.-context, even if we assume that S is an ordinary scheme.
This is because the “free” E..-Z-algebra on one generator is not the ordinary ring Z[z].
Instead, the appropriate free algebra R has

o0

7a(R) = @D Ha(Em, Z)

m=0

where the symmetric group X, acts trivially on Z. This ring spectrum is not flat over
Z in any reasonable sense. Thus, if we were to employ E-ring spectra (or even Eu-
Z-algebras) in our foundations, then we would have to distinguish between the “flat
affine line” Spec Z[z] and the “additive group” Spec R. In order to get any reasonable
analogue of classical algebraic geometry, we need to force these two versions of the
affine line to coincide.

We conclude this section by giving two more ways to think about the difference between
E.-ring spectra and simplicial commutative rings. This may be safely omitted by the reader,
since we will afterward have no need to consider E-ring spectra at all.

As we remarked above, the functor @ factors through a functor ¢ : SER — €77, where
the superscript ¢ indicates that we consider only connective E-ring spectra. In concrete
terms, the functor # “forgets” the strict commutativity of multiplication.

Proposition 2.6.1. The functor &' commutes with all limits and colimats.

Proof. Simplicial commutative rings and connective Ey-ring spectra both have “underlying
spaces” such that a morphism is an equivalence if and only if it induces an equivalence on
the underlying spaces. Moreover, ' is compatible with the formation of these underlying
spaces. The assertion concerning limits follows immediately from the fact that the formation
of limits commutes with the formation of the underlying spaces in both cases.

For colimits, we must work a little harder. First of all, it suffices to prove the assertion
for filtered colimits and finite colimits, since any colimit is a filtered colimit of finite colimits.
For filtered colimits we can apply the same argument as above (since the formation of filtered
colimits commutes with the formation of the underlying spaces). To prove that §' commutes
with finite colimits, it suffices to show that it preserves initial objects and pushouts. The
initial object in both settings is the discrete ring Z which is preserved by ¢'. Pushouts in
both co-categories are given by (derived) tensor products. . ]

By the adjoint functor theorem, we see that #' admits a right adjoint which we shall
denote by 6,. Using the adjoint functors #’ and 8., we may characterize the co-category SCR
as an co-category of coalgebras over the comonad given by the adjunction 8'6,. Let C denote
the oo-category of coalgebras over this comonad.

Proposition 2.6.2. The natural functor 8ER — C is an equivalence of co-categories.
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Proof. This follows from the oc-categorical version of the Barr-Beck theorem, since &' com-
mutes with all limits and detects equivalences. O

Thus SCR is an oo-category of coalgebras over €Jz,. In order to understand the relevant
comonad, let us describe the functor #, more explicitly. The discrete ring Z[z] is the “free
object on a zero cell” in the oo-category SCR. In other words, for any R € SCR, the
underlying space of R is given by Homger(Z[z], R). Thus for any S € £J5 ;» the underlying
space of 6,5 is given by

Homgem(Z[.T], 9*5) = HomggE/ (Q’Z[.’E], S) = Homggcz/ (Z[.’E], S)

It follows that on the level of the underlying spaces, the functor 8, and the comonad '8, are
given by the formula by S +— Homey (Z{z], S).

Remark 2.6.3. To see the ring structure on the space Homger(Z|[z], S), note that the affine
line Spec Z[z] is a commutative ring object in the category of affine schemes. Because Z[z]
is flat over Z, coproducts of copies of Z{z] in the category of ordinary commutative rings
agree with the corresponding coproducts in €Jz,. Consequently, Z[z] also has the structure
of an “commutative ring object” in 63%”/.

Now it is crucial to remember that the discrete ring Z[z] is not free in €Jz;, so that
Homey, (Z[x], S) is in general distinct from the underlying space of S. To understand the
difference, we note that given any point y € m.5, the commutativity of the product operation
on S gives an action of the symmetric group X, on the point y™ (and so, for example, a group
homomorphism ¥, — m,§). For any point in the image of Homey, ,(Z[z], §), this symmetric
group action is induced by the corresponding action of £, on z" € Z[z], which canonically
trivial since Z[z] is a discrete space.

By considering coalgebras over the comonad Hom(Z[z], ), we are essentially forcing
Z[z] to corepresent “underlying space” functor. In other words, we may view SCR as the
oo-category obtained from €J7, by forcing the ordinary ring Z[z] to be the free Z-algebra
generated by z.

There is another way to understand the difference between 8CR and €7, based on a sort
of “Tannakian philosophy”. Let R be an A, ring spectrum. Then specifying R is equivalent
to specifying the oo-category Mg of left R-modules, together with the distinguished object
R. From this data, we may reconstruct R as the endomorphisms of the distinguished object
(or, equivalently, of the corepresentable “fiber functor” Hom(R, e)). From this point of view,
we should understand additional structure on R as coming from additional structure on
the co-category Mp. For example, if R is an E»-ring spectrum, then Mg has a coherently
associative tensor product operation (with the distinguished object as the identity).

If Ris an E-ring spectrum, then the oo-category Mp is equipped with a tensor structure
which is coherently commutative and associative. Consequently, for any R-module M, one
obtains an action of the symmetric group T, on the n-fold tensor power M®”, and by taking
a colimit one can form a module of coinvariants ME™ for this action.
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Now suppose that R € SCR, and that M is a connective R-module. Then we can model
the situation by choosing a simplicial commutative ring which represents R, and a cofibrant
simplicial module which represents M. We can then apply the nth symmetric power functor
degreewise, to obtain a simplicial module which we shall denote by Sym%(M). One can
show that Sym?, preserves weak equivalences (between cofibrant objects), and thus induces
an endofunctor on the co-category of connective R-modules (it is the nonabelian left derived
functor of the classical symmetric power functor).

One can construct a map MS: ~ SymJp(M). This map is an equivalence if R is a Q-
algebra, but not in general. There is no way to recover the functor Symfy using only the
tensor structure on the oo-category of R-modules (which depends only on the underlying
E-ring spectrum structure on R); these functors depend on the structure of simplicial
commutative ring on A.

The functor Sym% is useful because it behaves like the classical symmetric power functor.
For example, if M is a projective module, then Sym@ (M) is also free of the expected rank. By
contrast, the module of coinvariants (M®")s, is usually not projective. If R is discrete, then
this module has higher homotopy groups which come from the homology of the symmetric
group Xy.

Remark 2.6.4. Unlike the functor M — ME", the functor Symz(M) is defined a prior
only when M is connective. In [23], we will discuss a generalization in which M is not
assumed connective: however, this extension is very strangely behaved (for example, it often
has nonvanishing homotopy groups in all degrees, even when M is perfect).

Remark 2.6.5. Using the symmetric power functors Symp, we can also construct exterior
powers Ap by setting AR(M) = Symp(M[1])[—n]. We will discuss this at length in §3.1,
where we show that this is equivalent to considering the nonabelian left derived functors of the
“nth exterior power” functor. Consequently, A} carries free modules to free modules of the
expected rank. Using exterior powers, we can define determinants, and therefore algebraic
groups such as SLy. By contrast, there does not seem to be analogue of the algebraic group
SL, in the setting of F,.-ring spectra.
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Chapter 3

Derived Rings

In this section, we develop the “derived commutative algebra” that will be needed in the
remainder of this paper. We begin with a review of the theory of simplicial commutative
rings in §3.1. In §3.2 we recall the construction of the cotangent complex of a morphism in
SCR, characterize it by a universal property. The next section, §3.3, contains a discussion
of the role of the cotangent complex in classifying square-zero extensions.

Using the cotangent complex, we shall in §3.4 set up a theory of smooth and étale
morphisms which generalizes the corresponding part of classical commutative algebra. In §3.5
we will discuss various other properties of modules and algebras and their interrelationships.

We will discuss a derived version of Grothendieck's theory of dualizing complexes in §3.6.
Finally, in §3.7 we prove a derived version of Popescu’s theorem on the smoothing of ring
homomorphisms.

3.1 Simplicial Commutative Rings

Let € denote the (ordinary) category of simplicial commutative rings. The category C admits
a Quillen model structure, where the weak equivalences and fibrations are those morphisms
which are weak equivalences and fibrations on the underlying simplicial sets. This model
structure is cofibrantly generated, and we shall denote the corresponding oc-category by
SCR.

An equivalent way to arrive at SCR is to work with the category €’ of (compactly gener-
ated) topological commutative rings. This category again admits a Quillen model structure,
where the weak equivalences and fibrations are given by those maps which are weak equiva-
lences and (Serre) fibrations on the underlying spaces. The formation of singular complexes
and geometric realizations give rise to a Quillen equivalence between € and @, so that they
model the same underlying co-category.

Let A € 8CR be any object. We may think of A as a topological space with the structure
of a commutative ring. As a topological space, A has homotopy groups {m;A};>0. Here,
we always take the base point at 0, the additive identity in A. The additive structure on
A induces an abelian group structure on each homotopy group m;A. This group structure
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agrees with the usual group structure if 7 > 0. A classical argument also shows that m A
acts trivially on all of the higher homotopy groups of A.

The ring structure of A induces a multiplication on the homotopy groups of A, which is
defined as follows. Let z € 7, A, y € m,A. We may represent z and y by maps [0,1]™ — A,
[0,1]" — A, whose restriction to the boundary of the cubes are identically zero. Then
TY € TnymA is represented by the product map [0,1]™*" — A. This product depends on
an identification of [0, 1/™*" with [0,1]™ x [0, 1]*. We note that the natural identification
[0, 1] =~ [0, 1]™ x [0, 1]® =~ {0, 1]*®[0, 1]™ =~ [0, 1]**™ involves a permutation of coordinates
and has degree (—1)"™. Consequently, the product on m,A is not commutative but instead
satisfies the graded-commutativity law zy = (—1)"™yz. The homotopy groups may be
assembled into a graded ring 7, A = @®;>omA which is commutative “in the graded sense”.
In particular, mgA is an ordinary commutative ring and each m;A has the structure of a
module over mgA.

Any ordinary commutative ring A may be regarded as an object of SER, by considering
it as a topological ring with the discrete topology. This identification is harmless because the
corresponding functor from commutative rings to SCR is fully-faithful. In fact, if B € SCR
and A is an ordinary commutative ring, then Homsex(B, A} is equivalent to the discrete set
of ordinary ring homomorphisms from 7B into A. In other words, the inclusion of ordinary
commutative rings into SCR is right adjoint to the functor m.

More generally, for each n > 0 one can consider the full subcategory of S€R consisting
of n-truncated objects. An object A € S8CR is n-truncated if ;A = 0 for ¢ > n. One
can give an equivalent but more intrinsic formulation as follows: an object A € 8CR if
7; Homgeg(B, A) = 0 for 2 > n (and any choice of basepoint). The full subcategory of
n-truncated objects of SCR is a localization of S@R. This follows from general theory (see
for example [22]), but one can also directly construct truncation functors 7<, : SER — 8CR
by forming coskeleta on level of simplicial sets. The latter approach to the definition gives
additional information: the natural map A — 7<,A induces an isomorphism on homotopy
groups in dimensions < n. We will call an object A € SCR discrete if it is O-truncated. In
this case, A is equivalent to the ordinary commutative ring mA.

If A is a fixed simplicial commutative ring, then the ordinary category of simplicial A-
modules admits a Quillen model structure, where the weak equivalences and fibrations are
those maps which are weak fibrations and equivalences on the underlying simplicial sets.
(Once again, one can give a topological construction as well.} The underlying oo-category
will be denoted by (M4)»o. This oo-category is presentable, has a zero object, and the
suspension functor is fully faithful. By Proposition 2.2.3, the oo-category M, of infinite loop
objects in (M 4)>o is stable and equipped with a t-structure having (M4)»o0 € M4 as the full
subcategory of connective objects. We will refer to objects of M 4 as A-modules and to objects
of (M4)so as connective A-modules. They are the same thing as left modules (connective
left modules) over the underlying Ay-ring spectrum of A. However, the co-category M4 has
extra structure when A € SCR. For example, we may ignore the distinction between left
A-modules and right A-modules, and view the tensor product operation as Mj-valued. This
tensor product is associative and commutative up to coherent homotopy.
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Since the model structure on simplicial commutative rings is cofibrantly generated, the
oo-category SCR is presentable. In fact, even more is true: S€R has enough compact objects,
so that SCR = Ind(SCR®) where SCR® denotes the subcategory of compact objects in SCR.
In fact, SCR is generated by the ordinary ring Z[z] in the sense that every object in S€R
can be constructed from copies of Z{z] using colimits. The object Z[z] co-represents the
“underlying space” functor on §€R, and the formation of the underlying space is compatible
with filtered colimits. The corresponding statements are also true for the slice oo-category
of A-algebras for each A € SCR, provided that we replace Z[z] by A[z] = A ®z Z[z].

Any object of SER has an underlying A-ring spectrum, which is a connective Z-algebra.
In particular, we may immediately import various notions from the theory of A,-ring spectra
and their modules to the theory of simplicial commutative rings and their modules. We shall
say that an A-module M is connective, discrete, flat, faithfully flat, free, projective, perfect,
almost perfect, or of Tor-amplitude < n if it has the same property when regarded as a left
module over the underlying A, -ring spectrum of A. Similarly, we can speak of A-algebras
B as being flat or faithfully flat, if they are flat or faithfully flat as left A-modules. We say
that A is Noetherian or coherent if its underlying A.-ring spectrum is left Noetherian or
left coherent.

‘There is an forgetful functor G : 8€R 4, — (Ma)so, which ignores the algebra structure
and remembers only the corresponding module structure. The functor G has a left adjoint
M — Sym’, M, which carries M to the “free A-algebra generated by M”. The underlying
A-module of Sym) M is the direct sum @®,>,Sym’ M, where the functors Sym”, are the
nonabelian left derived functors of the symmetric powers as discussed in §2.6.

Using the functor Sym}, one can obtain a better understanding of the way that A-algebras
are built. We may think of Sym?(A[n]) as the “free A-algebra” obtained by attaching a free
n-cell. More generally, given any homotopy class ¢ € 7,1 A, we may view z as classifying
a map Symgz(Z[n — 1]) — A and form the tensor product A’ = A ®synz(zjn—1) Z. In this
case, we say that A’ has been obtained from A by attaching an n-cell, with attaching map
z. If z = 0, we obtain the free algebra Sym’(A[n]) discussed above. Any A-algebra B may
be regarded as the result of a transfinite sequence of cell attachments. Moreover, if the map
A — B is n-connected, then B can be constructed by attaching cells only in dimensions > n.

In view of the fact that any morphism may be obtained through successive cell attach-
ments, the structure of the free algebras Sym’ M plays an important role in the theory. If
M is free, then Sym’; M is free (of the expected rank if M is of finite tank). In general,
Sym’y M is hard to describe. However, it is possible to give a description in the case where
M][-1] or M{-2] is free, as we now explain. For further details we refer the reader to [16],
p. 322.

Lemma 3.1.1. Let A € SCR. The functor M — (Sym; M[1])[-n| is the nonabelian left
derived functor of the “nth exterior power” functor.

Proof. For A € SCR, let T4 denote the nonabelian left derived functor of the nth exterior
power. Then Ty is uniquely characterized by the following two properties:
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e If A, is a simplicial object of 8€R with geometric realization A, and M, is a connective
A,-module with geometric realization M, then the natural map (T4, M.| — T4 M is an
equivalence.

o If A is discrete, and M is a free A-module, then T4 M is naturally isomorphic to the
(classical) nth exterior power of M over A, considered as a discrete A-module.

It is clear that the functor M — (Sym” M([1])[—n| has the first of these properties, since
functor Sym’; has this property. It suffices now to prove the second.

We first remark that if B € SCR and z € 7B, then 22 = 0 € 7,B. Indeed, it suffices
to check this in the universal case where B = Symz(Z[1]). We may write B = Z ®z[4j Z.
Consequently, m;B = Toriz [w](Z, Z), which vanishes for 1 > 1. Returning to the case where
B is general, we obtain a natural map from the nth exterior power of m; B over mpB into
7o B. In particular, let us suppose that A is discrete, M a discrete A-module, and B =
Sym (M[1]). We may then consider the composite ¢ : A4 M — A~ zmB — m,B =
T (® Sym’y M[1]) — m, Sym’ M[1]. To complete the proof, it will suffice to show that if M
is free, then ¢y is an isomorphism and =; Sym’ M[1] = 0 for j # n. The result is obvious
for n < 1, so we may as well suppose that n > 2.

Clearly it suffices to consider the case where M is of finite rank (the general case may be
handled by passing to filtered colimits). In this case, we may work by induction on the rank
of M. Using the equivalence

Sym% (M @ N)[1] = @yy;=n Sym’y M[1] ®4 Sym?, N[1],

we may reduce to the case where M ~ A. In this case, Ay M = 0, so it suffices to prove that
Sym”;(M[1]) = 0. One checks by explicit computation that the natural map A ® M[1] —
Sym* M[1] is an equivalence, so that all other summands Sym; (M([1]) must vanish. O

In order to state the next lemma, we must recall a bit of algebra. Let A be a (discrete)
commutative ring, and M a (discrete) A-module. Then one may speak of the divided power
algebra of M over A, denoted by I'yM. This is the free commutative A-algebra generated
by symbols m® for m € M and n > 0, subject to the following relations:

e For each m € M, m® = 1.

e For each m,m’ € M, we have

(m +m')™ = Z mOm' 9.

i+j=n

e For each m € M, a € A, we have (am)™ = a"m™.

e For each m € M, we have mdm{) = m(i+j)(i1,—':']f";£.
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The intuition is that the symbol m(® represents the “divided power” ﬂz‘,— In characteristic
zero, the division by 1! is legal and the preceding formula defines an isomorphism between
I'4M and the symmetric algebra Sym’ M.

The ring U 4 M admits a unique grading such that m™ is of degree n for all m € M. We
let Iy M denote the nth graded piece of 'yM. If M is free, then I'} M is also free. If M is free
of finite rank, then I'; MV is naturally isomorphic to the dual to Sym’; M (to see this, one
can realize [y M" as an algebra of differential operators acting on Sym’* M). Consequently,
the surjective map M®* — Sym’ M induces an injective map 'Y MY — (MV)®" which
realizes ;M"Y as the module of invariants for the action of the symmetric group ¥, on
(MY)®". Passing to filtered colimits, we deduce that ;M may be identified with the
invariant submodule of M®™ for any flat A-module M.

Lemma 3.1.2. Let A € SCR. The functor M — (Sym’ M[2])[—2n] is naturally equivalent
to the nonabelian left derived functor of the divided power functor I'™.

Proof. As in the proof of Lemma 3.1.1, it suffices to show that if A is discrete and M is
free, then (Sym} M([2])[—2n] is naturally equivalent to the discrete A-module I} M. Using
Lemma 3.1.1, we obtain an equivalence (Sym; M[2])[—2n] ~ T4x(M[1])[—n], where T4 is the
nonabelian left derived functor of A’.

We now compute T4(M[1]) using a particular representation of M[1] as a simplicial
A-module. Namely, we consider the complex of discrete A-modules which is given by A
in degree 1 and zero elsewhere, and let IV, be the simplicial (discrete) A-module which is
associated to this complex by the Dold-Kan correspondence. In particular, N}, is isomorphic
to the direct sum of k copies of M. It follows that T,4(M][1]) is represented by the simplicial
A-module P, = A’} N,. Now

n1 Tk
Pk‘ =~ ®n=n1+.__+nk /\M® ®/\M
A A

In particular, I, contains a summand isomorphic to M®". Each of the face maps P, —
F,_, vanishes on the module of ¥,,-invariant tensors in M®", so that we obtain a canonical
map ¢p : QM — 7, F,. To complete the proof, it will suffice to show that ¢, is an
isomorphism and that m; P, = 0 for 7 # n.

As in the proof of Lemma 3.1.1, we may reduce to the case where M is of finite rank and
work by induction on the rank of M. Breaking M up as a direct sum, we can reduce to the
case where M is of rank 1. In this case, the summand of Py corresponding to a decomposition
n =n;+...+n, vanishes unless each n; < 1, and is naturally isomorphic to M®" otherwise.
Consequently, we deduce that P, ~ M®" ®z Q., where P! is a simplicial abelian group with

» freely generated by the collection of surjective maps of simplices A, — A,. Consequently,
we have an exact sequence 0 — @, — Q. — Q. — 0, where (), computes the homology of
A, and @, computes the homology of 3 A,,. It follows that Q% = H;(A,; 8 A,) = Hi(S™),
which is Z when ¢ = n and zero otherwise. This proves that m; P, = 0 for ¢ # n, and one
proves that ¢,, is an isomorphism by an easy computation. O
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The following connectivity estimate is key to later calculations:

Proposition 3.1.3. Let A € SCR and M an n-connected A-module for n > 0. Then
Symy M is (n + 2m — 2)-connected.

Proof. We have (Sym’; M)[—2m] = T M[-2}, where T is the nonabelian left-derived functor
of the functor of mth divided powers. It therefore suffices to show that I'(M[—-2]) has the
same connectivity as M[—2]. This follows from the construction of left derived functors: if
M[-2] is k-connected, then it can be represented by a cofibrant simplicial module which is
zero in degrees < k, and the same is true of I'(M[-2]). 0O

Remark 3.1.4. If we replace divided powers by exterior powers, then we can use the same
proof to show that Sym'y M is (n + m — 1)-connected provided that n > 0. For m,n > 1,
this bound is weaker than the bound given by Proposition 3.1.3.

If f: A— B is a morphism in 8CR, we shall say that B is a finitely presented A-algebra
if it lies in the smallest subcategory of 8€R 4, which contains A[r] and is stable under the
formation of finite colimits. We shall say that B is a locally finitely presented A-algebra if
it is a compact object of SCR4,; in other words, if the functor Hom4(B, ) commutes with
filtered colimits. An A-algebra B is locally finitely presented if and only if it is a retract of
a finitely presented A-algebra.

We will also need to discuss a somewhat weaker finiteness condition on A-algebras:

Proposition 3.1.5. Let A € S8€R, n > 0, and B an A-algebra. The following conditions
are equivalent:

1. There ezists a finitely presented A-algebra B' and an morphism B" — B of A-algebras
which induces isomorphisms 1B’ =~ w1, B for m < n.

2. The functor Homs(B,e) commutes with filtered colimits when restricted to the oo-
category of n-truncated B-modules.

3. (If A is Noetherian.) The A-algebra <, B is Noetherian and moB is a finitely presented
moA-algebra in the category of ordinary commutative rings.

Proof. The proof of the equivalence of (1) and (2) is analogous to that of Proposition 2.5.7,
and the proof that (3) implies (1) is analogous to that of Proposition 2.5.10. Assume that
A is Noetherian and (1) holds. Replacing B by B, we may suppose that B is finitely
presented over A; it suffices to show that B is Noetherian. By the Hilbert basis theorem,
7B is Noetherian. To complete the proof, it will suffice to show that each ;B is a finitely
generated module over mB.

Working by induction on the number of cells, we can reduce to the case where B is
obtained from A by attaching a k-cell. If k¥ = 0, then the result is obvious. Otherwise, we
have B = A ®symy zjk-1) Z. Consequently, there is a spectral sequence converging to the

homotopy groups of B with E5*-term given by Tor,® Symg Z[k-1]

» (Z,m,A). In particular, m, B
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admits a finite filtration whose successive quotients are all subquotients of graded pieces of
the Tor-groups described above. It is easy to see that each of these graded Tor-groups is a
finitely generated module over mpA in each degree. O

If the equivalent conditions of Proposition 3.1.5 are satisfied, then we shall say that B is
of finite presentation to order n as an A-algebra, or that the morphism A — B is of finite
presentation to order n. If B is of finite presentation to order n for all n > 0, then we shall
say that B is almost of finite presentation over A.

We conclude this section with a few remarks concerning the relationship between the
oo-categories M4 and SCRy,, for A € SCR.

The adjunction between G and Sym}; gives rise to a monad on (M,4)so and a comonad
on S8CR4,. Using the oo-categorical Barr-Beck theorem, one can easily check that 8CR 4,
is equivalent to the co-category of G Sym}-modules in M. Thus, we may regard the oo-
category of A-algebras as determined by the oco-category of A-modules together with its
theory of symmetric powers. On the other hand, we shall show in a moment that the
oo-category of A-algebras determines the oo-category of A-modules in a much more direct
manner.

- As in the classical case, the algebra Sym’ M has a natural grading. If we ignore all of the
graded pieces except for the first two, we obtain an A-algebra which we shall denote by A®M.
‘This A-algebra naturally retracts onto A, so that we may view it as an object of the co-
category SCR 4, /4 of augmented A-algebras. This co-category possesses a zero object, namely
A. We shall denote this object by A @ M. If we choose models in which A4 is a topological
ring and M a topological A-module, then A @ M can be modelled by the topological ring
with underlying group A x M and multiplication given by (a,m)(a’,m’) = (aa’,am’ + a'm).

We may imagine that the data of a connective A-module M is more or less equivalent
to the specification of the augmented A-algebra A @ M. After all, from A & M we may
recover M as the cokernel of the structure homomorphism A — A @ M, or as the kernel of
the augmentation map. To get a more precise statement, we should notice that the algebra
A@® M is not arbitrary, but comes equipped with additional structure reflecting the stability
of M4. Since M has a delooping M[1] in M,, we obtain a delooping A & MllofAe M
in the oo-category of augmented A-algebras. Tterating this procedure, we see that A @ M
is an “infinite loop” object in the co-category of augmented A-algebras. We will show that
the converse of this observation holds: any such infinite loop object has the form A & M.

To approach the problem systematically, we note that the construction of A @ M from
M defines a functor ¢ : (Ma)>0 — SC€Ra, /4. The functor ¢ commutes with all limits, and
therefore induces a functor between the co-categories of infinite loop objects which we shall
denote by ¢.

Theorem 3.1.6. The functor 5 18 an equivalence of co-categories.

Proof. The proof requires some facts about the cotangent complex which will be established
in the next section. We only sketch the proof; this result will not be needed later.
Let €4 denote the oo-category of infinite loop objects in SCR 4 //A- We first note that the

functor 1 : 4 ker(A — A) maps 8CRy4/ /4 to (Ma)so. There is a natural identification
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¥ o ¢ with the identity on (M 4)>o0 and the functor 9 is compatlble with all limits, so that ¥
induces an exact functor 7,b G4 — M, which is left inverse to gb

We first claim the following: let C' € €4 be such that 'gb( ) € My is connective, and
let M € M4. Then fou : Home, (C, $M) — Homy, (4C, pdM) = Homye, (¥C, M) is an
equivalence. Since both sides are compatible with limits in M, it suffices to prove this when
M is k-truncated. View C as an infinite loop object {AI, A~ QA-H_1}1>0 in 8€R 4/ /4. Then
the mapping space on the left is given by the inverse limit of the sequence of spaces

Homsex,,, ,, (Ai, A ® T20M[i]) = Homa, (L x4 ®7, A t>0M]i]).

Let K; denote the cokernel of A; — A. The connectivity assumption on C implies that
K; is (i — 1)-connected. Consequently, K; ®4 A; is (3 — 1)-connected so that the natural
map K; ®4 A; — Ly, has (2i)-connected cokernel. Consequently, the natural map K; —
L /4 ®z; A has (21)-connected cokernel. For 7 > £, this implies that the natural map
Homy, (Lz,/4 ®z, A, M[i]) — Homyw, (K;, T>0M([i]) is an equivalence. Passing to the limit
as i — 00, we deduce that foar is an equlvalence

We would like now to claim that 'z,b is left adjoint to (;b In other words, we would like to
claim that fe s is an equivalence for any C € €4, and M € M,. So far, we know that this
is true whenever {/;C' is connective. By shifting, we may deduce that fc s is an equivalence
whenever {Z;C is (—n)-connected for n >> 0. Passing to colimits, we deduce that f¢ s is an
equivalence whenever C can be obtained as the colimit of a sequence Co — C; — ..., where
each C; is (—i)-connected. In particular, this holds when take C' = oM for M € IN[A, with
C; = qﬁ(rzl_lM ). This shows that ¢ is fully faithful and that its essential image contains
every C € €4 which can be obtained as the colimit of a sequence {C;} where ¢C; is (—i)-
connected.

To complete the proof, it suffices to show that every object of €4 may be obtained as a
colimit of a such a sequence. To see this, let C' € €4, and view C as an infinite loop space
{A }, where A e 8CRa/ 4. Then each A may be viewed as an “E-object” of S€R4//4; in
other words, it has a coherently commutative and associative addition law. Consequently,
we may use the constructions of [27] to produce arbitrarily many “connected” deloopings

of A;, which together give an object C;[i] € €4. One may then compute ¥C; = 75>_¥C.
Moreover, since 9 detects equivalences, this computation also shows that C is the colimit of
the sequence {C;}. O

3.2 The Cotangent Complex

Let A be a commutative ring, B an A-algebra, and M a B-module. An A-linear derivation
from B to M is an additive homomorphism d : B — M which annihilates A and satisfies the
Leibniz rule d(bb') = ¥'d(b) +bd(b'). If A and B are fixed, then there exists a universal target
for A-linear derivations. This is the module Q5,4 of Kdhler differentials, which is defined to
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be the free module generated by formal symbols {db},c g, modulo the submodule of relations
generated by {d(bb') — bd(V') — b'd(b)}spren and {da}aea.
If ¥ : B — C is another morphism of commutative rings, then there is an exact sequence

{1/a @ C — Qcya — Qgyp — 0.

In general, this sequence is not exact on the left. This leads one to suspect that there
exists some natural extension of the above short exact sequence to a long exact sequence,
each term of which is a kind of left-derived functor of 2. However, since € is a functor
of commutative rings, and commutative rings do not form an abelian category, the notion
of a left-derived functor needs to be interpreted in terms of the non-abelian homological
algebra of Quillen. The motivating idea is that while Q¢ is in general badly behaved, it
behaves well when C is a free B-algebra. In this case, Q¢/p is a free C-module on a set of
generators which may be taken in bijection with a set of generators for C over B, and for
any A the above short exact sequence is exact on the left. Thus, we should imagine that
free B-algebras are in some sense “acyclic” for the functor Q,/p, and try to use these to
resolve arbitrary B-algebras. If C is an arbitrary B-algebra, we can replace C by a so-called
“cofibrant resolution” C, — C, where C, is a simplicial commutative B-algebra each term
of which is free, and its map to C is a weak equivalence of simplicial commutative rings.
Then, applying l,/p termwise to C,, we get a simplicial module over C,, which may be
interpreted as an object in the derived category of C-modules. This object is called the
cotangent compler of C over B and is usually denoted by Lcyg. The Oth cohomology of
the cotangent complex is the ordinary module of Kéhler differentials, and the short exact
sequence described above extends to an exact triangle

Lp/a ®% C — Loya — Loyp — Lpa ®% CI1).

Of course, there is no real reason to require that A and B are ordinary commutative
rings: the definition makes perfectly good sense when A and B are simplicial commutative
rings to begin with. Moreover, in this setting the cotangent complex becomes much easier
to understand, because it may be characterized by a universal property. We will take this
universal property as our definition of the cotangent. complex, and we will see that the above
construction actually works to produce an object having this universal property.

Let us motivate the definition of the cotangent complex by reformulating the universal
property of (1g,4. We first note that giving an A-linear derivation from B into M is equivalent
to giving an A-algebra section of the natural map B@ M — B. The advantage of this
description is that it mentions only modules, algebras, and the construction (B,M) —
B ® M. We have all of these notions at our disposal in the derived setting, and may
therefore attempt the same definition.

For later applications, it will pay to work a little bit more generally. Rather than con-
sidering the cotangent complex of a map of simplicial commutative rings A — B, we will
instead consider natural transformations ¥ — F', where F,F : SCR — § are S-valued
“moduli functors” on S€R. We recover the classical situation by taking ¥ and F’ to be the

a9



corepresentable functors Homger(B, ¢) and Homger(A, ).

We first introduce the appropriate replacement for the notion of a B-module in the above
setting. Let F : SR — 8 be a functor. A gquasi-coherent complez M on F assigns to each
A € SCR and to each n € F(A) an A-module M(n), which varies functorially in 7 in the
strict sense that there exists a coherent family of equivalences

M(n) @4 A" = M(n')
whenever n' = ¢,n for some ¢: A — A"
Remark 3.2.1. Since SCR is not a small co-category, the oo-category QCg is in general a

“very large” oo-category: it may be that its morphism spaces are not set-sized. This issue
will never arise for moduli functors F which are of interest to us.

Proposition 3.2.2. Let ¥ : 8CR — § be a functor.

o The quasi-coherent complezes on F form a stable oc-category QCs.

o If the functor F is accessible, then QCg is presentable.

Proof. The oo-category QCy is stable because it is a limit of stable co-categories. The second
claim follows from straightforward cardinality estimation. ' ]

Remark 3.2.3. Given any property P of modules which is stable under base change (see
§3.5), we shall say that a quasi-coherent complex M on F has the property P if and only if
each M(n) has the property P, for n € F(A).

Example 3.2.4. Suppose that F is the co-representable functor Hom(A, e). Then giving a
quasi-coherent complex M on ¥ is equivalent to giving the A-module M(n), where n € F(A)
is the universal element. Moreover, M has a property P (assumed to be stable under base
change) if and only if M(n) has the same property P when considered as an A-module.

For technical reasons, we need to introduce the following condition:

Definition 3.2.5. Let A € SCR, and let M be an A-module. Then M is almost connective
if M[n] is connective for n > 0.

Remark 3.2.6. Some authors use the term connective to refer to the property that we have
called almost connective.

Remark 3.2.7. The property of being almost connective is stable under base change, so it
also makes sense for quasi-coherent complexes. We remark that if M is an almost connective,
quasi-coherent complex on ¥, then there need not exist any value of n for which Min] is
connective; n is required to exist only locally.
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Let F : S€R — 8 be a functor. Fix C € §CR and n € F(C), and consider the functor
which assigns to each connective C-module M the fiber Q(C,n, M) of F(CHM) — F(C) over
the point 1. Often the functor M — Q(C, 7, M) is corepresentable by an almost connective
object Lg(n) € Mc. In this case, Ls(n) is covariantly functorial in 1 in the weak sense that
a map ¥ : C — C" induces a map

¢y : Ls(n) @c C" — L(ym).

If ¢, is an equivalence for any ¢, then Lz is a quasi-coherent complex on the functor F
which we shall call the absolute cotangent compler of F.

Remark 3.2.8. A priori, it is not clear that a module Ly(n) co-representing the func-
tor Q(C,n, ) is uniquely determined, since the Q(C,7,e) is only defined for connective
C-modules. However, any object of (M¢)>_ is uniquely determined by the functor that it
corepresents on the subcategory (Mg)so. This follows from the formula Homyy,, (M, N) =
QF Homyy, (M, N[k]). This proves that a cotangent complex is uniquely determined, provided
that each Lg(n) is almost connective. This condition will always be satisfied in practice.

'The following property is immediate from the definition:

Proposition 3.2.9. Suppose given a diagram {F,}acy of functors SCR — 8, indezed by some
small oo-category J. Suppose further that each F, has a cotangent complex L, € QCs_. Let
F be the limit of the diagram, and define L € QCy4 to be the colimit of the quasi-coherent
complezes Lo|F. Then L is a cotangent complex for F, provided that L is almost connective.
(This last condition is always satisfied if, for ezample, the diagram is finite, or if each Ly is
connective. )

We will actually be more concerned with the case of relative cotangent complex Lz g,
associated to a natural transformation p : ¥ — § of functors. If F and G have cotangent
complexes, then we note that p induces a natural transformation LglF — Lz. We may
then define Ly,g to be the cokernel of this transformation. Alternatively, we note that
the cokernel in question may be characterized by the following universal property: for any
n € F(C) and any connective C-module M, the space of maps Homy, (Lg,5(n), M) is given
by the fiber of the map F(C ® M) — F(C) xg(c) G(C & M). We take this latter property as
the definition of the relative cotangent complex: it is sometimes the case that Ly /g exists
even when Ly and Lg do nat.

The following functorial property of the relative cotangent complex follows easily from
the definition:

Proposition 3.2.10. Let F: SCR — § be a functor with a cotangent complez Ly, g € QCs,
and let G — G be any natural transformation. Then Ly /g|F is a cotangent complex for the

projection ' =F xqG§ — G

'The next property is slightly less obvious, and we will need the following lemma:
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Lemma 3.2.11. Let A € 8CR, let §,5,5" : (Ma)>o — 8 be functors. Suppose that G’ and
G" are co-representable by almost connective objects L', L" € My, and suppose there ezists a
fiber sequence

9/ — 9 — gll .

Then G s co-representable by an almost connective object of L € Mpy4.

Proof. We remark that G”(M) has a natural base point for each M, given by the zero map
L" — M; it is with respect to this base point that the fiber is taken. Similarly, G'(M) has
a natural base point; this gives a natural base point of G(M). We may then extend the
definition of G(M) to all M € (M4)>—, by the formula

5(M) = Q" §(M(n}).

This formula also shows that G{M) admits a functorial sequence of deloopings, so that
we may view § as an object in the co-category € of spectrum-valued functors on almost
connective objects of M4. The same reasoning gives extensions of §' and §”. The image
of the Yoneda embedding is a stable subcategory of €. Since §' and §” belong to this
subcategory, so does G. Thus G is representable by an almost connective object of M4. O

Proposition 3.2.12. Let T — F — F" be a sequence of natural transformations of functors.
Suppose that there exists a cotangent compler Ly ;5. Then there 1s an ezact triangle

Ly jgu|F — Lgyg0 — Ly,

in the sense that if either the second or third term exists, then so does the other and there is
a triangle as above.

Proof. If § — §' is any transformation of functors, let us abuse notation by writing Homav, (Lg, g (1), M)
for the homotopy fiber of G(AGM) — §(A) xg(4) G (A® M), for any A € 8CR, M € (Ma)>o,

n € §(A).
Given any A € 8€CR, M € (Ma)>0, and 5 € F(A), there exists a fiber sequence of spaces

HomMA (L?/T(n)i M) - HOIHMA (L?/T’(n)a M) - HOIIIMA (LT/.’:"'("?/)’ M)

where 7/ denotes the image of 1 in F(A4). Consequently, if Ly, (1) exists as an almost
connective object of M4, then Lz, 5(n) can be constructed as a cokernel of the natural map

Ly jgu(n') = Lg ;5 (n).

Conversely, if L4 (7) is representable by an almost connective complex, then so is Ly, (1)
by Lemma 3.2.11. The compatibility with base change follows from the triangle. tJ

For A € SCR, we let Spec A denote the corepresentable functor Homgex(A, ). In consid-
ering the relative cotangent complexes of corepresentable functors, we will often omit “Spec”
from the notation. Thus, we write Lg/4 for Lgpec B/spec4s LF/a 10T L/ spec 4, and so forth.
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For a map A — B in 8€R, the existence of Lg/4 is guaranteed by Proposition 3.2.14 below.
First, we need an easy lemma:

Lemma 3.2.13. Let A € 8CR, and let M be a connective A-module. Let B = Sym’ (M) be
the free A-algebra generated by M. Then Lp,4 exists and is naturally equivalent to M ® B

Proof. Let C be a B-algebra and N a C-module. We must compute the mapping fiber of
Hom4(B,C @ N) — Homu(B,C). Since B is free, this is equivalent to the mapping fiber
of Homy, (M,C & N) — Homyy, (M, C), which is just Homue, (M, N) =~ Homa, (M ®4
B, N). O

Proposition 3.2.14. Let f : A — B be a morphism in 8CR. Then Lp,a ezists and is
connective. Moreover, if B is finitely presented (of finite presentation to order n, locally of
finite presentation, almost of finite presentation) over A, then Lp/4 is a finitely generated
(perfect to order n, perfect, almost perfect) B-module.

Proof. We first treat the case where B = A[z]. In this case, Lemma 3.2.13 implies that Lg/4
exists and is free on a single generator.

Any A-algebra B can be constructed from the A-algebra A[z] by forming colimits. Con-
sequently, the functor Homgexr(B, ) is a limit of functors having the form Homgex(A, o).
Using Proposition 3.2.9, we see that Lp,4 exists and is a colimit of copies of B. In particular,
it is connective.

If B is finitely presented over A, then the above proof actually shows that Lg/4 is a finite
colimit of copies of B. Therefore it is finitely presented. If B is of finite presentation to order
n, then Homsex,, (B, B& M) commutes with filtered colimits in M for M € (Mpg)<n so that
Lgya is perfect to order n. The same argument applies if B is locally of finite presentation
or almost of finite presentation to show that Lp,4 is perfect or almost perfect. O

Remark 3.2.15. Combining Propositions 3.2.10, 3.2.12, and 3.2.14, we deduce that a nat-
ural transformation L, g has a cotangent complex if and only if, for any B € G, the functor
F' = J xgSpec B has an absolute cotangent complex Lg.

We note that the proof of Proposition 3.2.14 also shows why the cotangent complex,
as we have defined it, can be computed using the nonabelian derived functor approach of
Quillen. If f : A — B is a map of ordinary commutative rings, and we make a cofibrant
replacement B, for B, then B is the geometric realization of the simplicial object B., so that
Lp;a should be the geometric realization of the simplicial B-module Lg B.jar Since each B
is a free A-algebra, we deduce from the argument of Proposition 3.2.14 that L B./a 1S 8 free

En-module, and therefore equivalent to the corresponding module of Kahler differentials.
We next prove a kind of Hurewicz theorem for the cotangent complex.

Proposition 3.2.16. Let f : A — B be a morphism in SCR, and let K denote the cokernel of
this morphism (in the oo-category M4 ). Then there exists a natural map ¢ : K®aB — Lgja.
Moreover, if f is n-connected for n > 0, then ¢ is (n + 2)-connected.
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Proof. Since Lp/4 is connective, the identity map from Lg/4 to itself classifies a universal
derivation d : B — B ® Lg/s. Let 2 : B — B @ Lg;s denote the zero section. Then
d—z:B — Lps is a map of A-modules. Since d|A = z{A, d — z factors naturally through
K. Tensoring up to B, we obtain the morphism ¢.

Now we shall prove the connectivity statement. Let M; denote the cokernel of ¢. We
note the following properties of M;:

e The formation of My is compatible with filtered colimits in B.

o [f we are given two composable maps A Ry JEN C, then we get an exact triangle of
C-modules
Mf ®B C — Mgof — Mg.

e The formation of M is compatible with base change in A.

If K is n-connected, then we may view B as obtained from A by a transfinite process of
attaching k-cells for k > n. In view of the above naturality properties for M, it will suffice
to show that if B is obtained from A by attaching a k-cell, then M} is (k + 2)-connected.
Moreover, since the connectivity of My is unaltered by the base change A — 7y A, we may
assume that A is discrete.

Suppose that k = 1. Then B = A ®z(;) Z for some attaching map Z[z] — A, classifying
an element a € woA. Then, as an A-module, B is the cokernel of the map A = A. It follows
that K may be identified with A[1], so that K ® 4 B ~ BJ1]. On the other hand, the relative
cotangent complex Lp;4 may also be identified with B[1] (since we are attaching a 1-cell).
It is not difficult to check that the map ¢ is an isomorphism in this case, so that M; = 0.

Now suppose that & > 1. Since A is discrete, the attaching map for any k-cell must
be zero. Thus B ~ Sym’(A[k]). It follows that K =~ @m0 Sym’ (A[k]), so that K ®4
B = ®m>oSymg Blk]. Also, we have Lg/n = Alk] ®4 B = Blk]. The map ¢ sends
Symy B[k] isomorphically onto Lg/4, so that we may identify the kernel My[—1] of ¢ with
®m>2 SymF Blk]. Since B[k] is (k — 1)-connected, Proposition 3.1.3 ensures that Sym% B[]
is (k 4+ 2m — 3)-connected, so that M;[—1] is (k + 1)-connected. Consequently, the cokernel
M; is (k + 2)-connected. O

Corollary 3.2.17. A morphism f : A — B in 8CR is an equivalence if and only if f induces
an isomorphism mgA — mB and Ly = 0.

Proof. The “only if” direction is clear. Suppose, conversely, that mypA maps isomorphically
onto mpB. Let K denote the cokernel of f. If f is not an equivalence, then 7, K # 0 for
some n > 0; choose n as small as possible. Then m,(K ®4 B) =~ m,Lgja = 0. On the other
hand, the group on the left may also be computed as the ordinary tensor product of 7, K
with myB over mpA. Since mgA =~ 7B, we deduce that 7,/ = 0, a contradiction. O

We conclude this section by remarking that Proposition 3.2.14 has a converse, which
gives a handy criterion for recognizing A-algebras of finite presentation:
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Proposition 3.2.18. Let f : A — B be a morphism in SCR. The following are equivalent:

1. B is almost of finite presentation (locally of finite presentation, of finite presentation)
over A.

2. The ordinary commutative ring woB is finitely presented over myA in the usual sense,
and Lg;a is almost perfect (perfect, finitely presented).

Proof. 1t is clear that (1) implies (2) in all cases. We must prove the converse. Suppose first
that 7o B is finitely presented over myA and that Lg/, is almost perfect. We must show that
B is almost finitely presented over A. By lifting a finite presentation of 7B over myA, we
may reduce to the case where mpA ~ myB. We prove, by induction on n > 0, that there
exists a factorization A — A,, — B, where A,, is finitely presented over A and m; A, ~ m; B
fori <mn.

For n = 0, there is nothing to prove. Now suppose n > 0. Without loss of generality
we may replace A by A,_;. Let K denote the cokernel of A — B, so that K is (n — 1)-
connected. From Proposition 3.2.16, we deduce that the natural map K ®4 B — Lp/4 is
(n + 1)-connected. Consequently, m,Lp/4 =~ (K ®4 B) ~ m, K, and 7;Lg/4 = 0 for i < n.
Since Lp/4 is almost perfect, its first nonvanishing homotopy group is finitely presented
as a discrete mgB-module. Consequently, we deduce that 7, K is finitely presented as mgA-
module. Attaching finitely many free n-cells to A, we may reduce to the case where m, K = 0.
Now K is n-connected, so that the same argument given above shows that 7, K is finitely
generated as a mpA-module. Each generator gives rise to a homotopy class z € 7, A, together
with a nullhomotopy in B. Using this data, we may enlarge A by attaching finitely many
(n + 1)-cells to kill the kernel of m,A — =, B. This completes the construction of A,,, and
the proof of the proposition in the “almost finite presentation” case.

Suppose next that Lp/a = M[n|, where M is a projective B-module and n > 1. Then
moB ~ mpA. Let K denote the cokernel of A — B. Then 7, K is a projective mgB =~ mA-
module, so that we may find a projective A-module P and a morphism P[n] — K which
induces an isomorphism on m,. Then we have a natural map of A-modules P[n — 1] —
K[-1] — A which vanishes after tensoring with B. Let C = A ®symy, Pin—1] 4 denote the
A-algebra obtained by killing P[n — 1]. Now we have a factorization A — C - B. By
construction, Lg/a ®4 B =~ Lpya so that Lgc = 0. Thus B =~ C so that B is locally of finite
presentation as an A-algebra.

Now suppose that B is almost of finite presentation over A and that Lg,4 is perfect. Let
K be the cokernel of A — B and let k denote the least integer such that 7, K # 0. Then
Lpja[—Fk] is connective and perfect, hence of Tor-amplitude < n for some n > 0. We work
by induction on n. If n = 0, then Lg/4 is a shift of a projective module and we are done.
Replacing A by a finitely presented A-algebra if necessary, we may suppose that & > 1.
Choose a system of generators for 7, K, and let A’ denote the finitely presented A-module
obtained by killing those generators in m;_;A. Then we obtain a map A’ — B with k-
connected cokernel. Moreover, it is easy to check that the Tor-amplitude of Lg/a:[—k — 1] is
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< n—1, provided that n > 0. By the inductive hypothesis, B is locally of finite presentation
as an A’-algebra, hence locally of finite presentation as an A-algebra.

If Lp;a is actually finitely presented, then the proof is the same except that we eventually
reduce to the case where Lg/a{—k] is a free module. O

3.3 Small Extensions

From the derived point of view, the entire cotangent complex Lg/4 can be characterized by
a universal property. The classical language is suitable only for discussing trivial square-zero
extensions of the form B®M when B and M are discrete, so that the same universal property
can only be used to characterize Hom(Lp/4, M) when M is discrete. This determines the
truncation 7<oLp/a =~ Qp/4, and this universal property is sometimes used as the definition
of the Kahler differentials. However, there does exist a classical interpretation for a slightly
larger bit of the cotangent complex, namely 7<;Lp/4. This interpretation may be given
as follows: if A and B are ordinary commutative rings and M is a B-module, then the
‘1-truncated space Homav, (L 4, M[1]) is equivalent to the classifying space for the groupoid
of square-zero extensions of B by M (as A-algebras). This is usually stated on the level
of connected components: isomorphism classes of square-zero extensions of B by M are
classified by m_; Homyy, (Lp/a, M) = Ext'(Lga, M).

We would like to obtain a similar interpretation of 7_; Homi, (Lp/a, M) in the case
where A, B, and M are not necessarily discrete. Morally, it seems clear that this group
again classifies equivalence classes of square-zero extensions, provided that the latter concept
is suitably defined. Unfortunately, in the derived setting it is difficult to say what a square-
zero extension is. In order to avoid this problem, we will take the universal property of the
cotangent complex as a definition:

Definition 3.3.1. Let A € SCR, let B be an A-algebra, and let M be a connective B-module.
A small extension of B by M over A consists of the following data:

e An object B € SCR.
e An A-algebra section s of the projection B & M[1] — B.

e An identification of B with the pullback B x pguq) B, where B maps to B & M [1] via
s and via the zero section.

Remark 3.3.2. Since the algebra B is determined by the section s : B — B & M[1], we
could instead simply define a small extension to be a section s as above. This makes it
clear that small extensions are classified by Homu, (Lp/a, M[1]). The point of the inefficient

definition given above is that we wish to emphasize the algebra B as the “total space” of
the extension.

_ We will abuse terminology and simply refer to B as a small extension of B. We note that
B is naturally equipped with the structure of an A-algebra, a morphism to B, and that the
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kernel of the map B — B may be identified with M as an A-module. We should emphasize
that simply specifying B , even together with this additional structure, does not determine
the data of the small extension except in special cases. It is to these cases which we shall
turn next.

Proposition 3.3.3. Suppose that B € SCR be k-truncated, and that I C m.B is a mpB-
submodule. Then there exists a k-truncated simplicial commutative ring B/I such that for
any k-truncated A € SCR, Homgex(B/I, A) C Homgex(B, A) is the union of connected
components corresponding to those morphisms B — A such that the induced map m B — m A
vanishes on I. Moreover, we have m;(B/I) ~ m;B for i # k, m(B/I) = (mcB)/1.

Proof. Consider I as a discrete Z-module. There is a natural map of Z-modules from I[k]
into B, hence a map f of Z-algebras from Sym*(7[k]) into B. Let C denote the pushout
Z [sym*zju)) B, where the map Sym*(I[k]} — Z classifies the zero map from I[k] into Z.
One easily checks that Homgex(C, A) C Homgex(B, A) is the union of those connected
components of maps which vanish on I, whenever A is k-truncated. Let B/I denote the
truncation 7<xC. Then B/I has the appropriate mapping properties. A simple calculation
shows that B/I has the expected homotopy groups. O

Remark 3.3.4. The universal mapping property of B/I immediately implies that any other
B-algebra having the same homotopy groups (as a 7, B-algebra) is canonically equivalent to
B/I.

In the situation Proposition 3.3.3, we shall say that B is a square-zero extension of B/I
by I[k] if either k > 0, or k =0 and I? = 0 in B ~ myB. Note that in either case, I has a
(unique) B/I-module structure which induces its natural B-module structure.

Proposition 3.3.5. Let A € SCR and let B be a k-truncated A-algebra. Let C denote the
0o-category of pairs (M, s) where M[—k] € (Mp)o and s € Homyy,(Lp/a, M[1]) classifies a
small extension B of B. _

Then the functor (M, s) — B from C to 8€R 4/, is fully faithful, and its essential image
consists of the square-zero extensions of B by B-modules concentrated in degree k.

Proof. Let F' denote the functor in question. It is easy to see that for any (M, s) € C, the
algebra F(M,s) is a square zero extension of B in the co-category of A-algebras. We next
show that F' is fully faithful. In other words, we must show that for any pair of objects
(M,s), (M, s'), the natural map

Home((M, s), (M, ")) -~ Homser,, ,,(F(M, s), F(M',5))

is an equivalence. We note that both sides are compatibly fibered over the discrete space
Homy, (M, M'). It therefore suffices to show that F' induces an equivalence on the fiber
over any given homomorphism f : M — M'.

The fiber Y; of Home((M, s), (M', ")) over f is the space of paths from s to s’ o f in
Homuv, (Lg/a, M[1]). Consequently, this space is either empty, or is a torsor for Homuy, (Lz /4, M),
depending on whether or not the difference s — (f o s’) vanishes in 7o Hom, (Lp/a, M'[1]).
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Let us now compute the space X = Homsez,, ,, (F(M, s), F(M', s')). This space is again
fibered over the discrete space Homy, (M, M’); we will denote the fiber over a homomorphism
f by X;. To compute X make use of the fact that F(M’, s") >~ BxggpmpB. This implies that
X is given by the fiber of the map Homgex,, (F(M, s), B) — Homsex,, (F(M, s), B® M'[1])

where the base point is taken over the composite map v : F(M,s) — B L BeM [1]. Both
sides are compatibly fibered over Homgex, /(F (M, s), B); thus we may identify X with the
space of paths in Hom, ,,  (Lrm.s)/4, M'[1]) = Homa, (Lr(m s)/4 ®F(m,s) B, M'[1]) which

join the morphism « : F(M,s) — B % Bo M'[1] to the morphism 8 : F(M,s) — B LA
B o M'[1]. :

We have an exact triangle Lrars)/4 ®Fm,sy B — Le/a — Lp/r(m,s), which induces a
fibration ‘

1 HOIIIMB (LF(M,s)/A ®F(M.s) B, M’[].]) ~— HOH]MB (LB/F(M,s)[_]-]: M'[].])

having fiber Homy, (Lpsa, M'[1]). We note that i(c) and i(3) both have trivial image in
the space Homa, (Lg/rim,s)[—1], M'[1]), so that any path from « to § gives rise to a point in
the space Z = Homuv, (Lp/Fa,s), M'[1]). Since the cokernel of F(M, s) — B is equivalent to
M][1], it is k-connected. By Proposition 3.2.16, there is a natural (k+2)-connected morphism
M1 ®Fr(m.s) B — Lpsr(m,s)- Since M'[1] is (k 4+ 1)-truncated, we deduce that

Y = HomMB (LB/F(M,S)a M’[l]) =~ HomMB (M[l]@F(M,S)B, M’[l]) >~ HOIHMF(M'!)(M[:[], M’[l]),

which is equivalent to the discrete space of mB-module homomorphisms from M to M’
Moreover, the map X — Z corresponds simply to the map X — Homgy, (M, M') considered
above.

Let us now fix a homomorphism f : M — M’, corresponding to a path joining i(a)
and (). The fiber Xy is nonempty if and only if the path p can be lifted to a path
joining o to 8. The obstruction to lifting such a path lies in component group of the fiber
Homuy, (Lp/a, M'[1]) of i. A simple computation shows that this obstruction is simply given
by s—(fos’) € mo Homy, (Lp/a, M'[1]), so that X is nonempty if and only if Yy is nonempty.
Supposing that X ; is nonempty, we note that since Z is discrete, X; has the structure of a
torsor for the loop space of Hom, (L4, M'[1]). Moreover, the induced map Yy — Xy isa
map of torsors, and therefore a homotopy equivalence.

It remains to show that F' is essentially surjective: that is, every square-zero extension
of B arises as a small extension. Let C € 8€R4,,p be a square-zero extension of B by I[k],
where I C m,C. Let D = C ®symy,1x)) 4, so that we may identify B with 7<xD. We also
note that B ®c D ~ Sym¥y, I[k + 1] as B-algebras.

The exact triangle C — B — I[k+ 1] of C-modules becomes split after tensoring with B,
so that we get a decomposition B ®c B ~ B @ (B ®¢ Ik + 1]|) as B-modules. In particular,
the natural map B®¢ D — B®c B induces on m.; the map I[k+1] — (mo(B®c I))[k+1].
Since 7 is square-zero, this map is an isomorphism. Consequently, we see that T<x1(B®c B)
is equivalent as a B-algebra to Tceyr Symp I[k+ 1] =~ B® I[k+1]. Now, C equalizes the two
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natural maps from B to B x¢ B, and therefore also the two maps from B to B ® Ik + 1].
Consequently, we obtain a map C — B Xpggg+1y D, which is an equivalence (this can be
checked by computing homotopy groups). 0

This proposition is very useful because square-zero extensions exist in abundance. For
any k-truncated B € SCR, we may view B as obtained by making k successive square zero
extensions of the discrete ring mpB. In fact, there is a more canonical construction which
works more generally.

Proposition 3.3.6. Let f : A — B be a k-connected morphism of simplicial commutative
rings, k > 0. Letd: B — B ® Lg/a denote the universal derivation, and let B denote the

corresponding small extension of B over A. Then f: A — B is (k + 1)-connected.

Proof. Let K denote the cokernel of f and K the cokernel of f Then we have an exact
triangle K — K — Lpsa. To prove that K is (k + 1)-connected, it suffices to show that the
map K — Lp/4 is (k 4 2)-connected. For this, it suffices to show that K — K ®4 B and
K ®4B — Lp/a are (k+2)-connected. The second map is (k + 2)-connected by Proposition
3.2.16. On the other hand, the cokernel of K — K ®4 B is K ®4 K. Since K is k-connected,
K ®4 K is (2k + 1)-connected. The proposition now follows, since 2k +1 > k + 2. O

Remark 3.3.7. Consequently, for any 1-connected morphism f : A — B, we may view A
as the inverse limit of a tower of small extensions of B whose homotopy groups converge
to the homotopy groups of A. Note that f is 1-connected if and only if mgA ~ mB and
mf : mA — mB is surjective. In particular, the natural map A — mgA is always 1-
connected.

Thus, in some sense, understanding maps between arbitrary objects of SCR can be re-
duced to understanding maps between discrete commutative rings and understanding certain
“linearized” mapping problems. The importance of the cotangent complex is that it controls
these linearized mapping problems.

There is another situation in which we can give an explicit characterization of the space of
small extensions: the case in which the kernel of the extension is induced from some module
over the ground ring. More precisely, we have:

Proposition 3.3.8. Let A € 8CR, and let B be a A-algebra. Let M4 be a connective A-
module, and set Mp = My ®4 B, A' = A® My. Let C C SCRy,p be the full subcategory
consisting of those algebras B’ for which the natural map B' @ 4+ A — B is an equivalence.

Then C s a small co-groupoid, and its classifying space is naturally equivalent to the space
Homy, (La/a, Mp(l]) of small extensions of B by Mp.

Proof. Let B’ be an algebra as above. Since A@M 4 is given by the fiber product Ax 4gs ANLE
by tensoring with B’ over A’ we deduce an equivalence B' ~ B ®ggn, B. Thus, B’ is the
total space of some small extension of B by Mg (over A). To complete the proof, we consider
two such small extensions B’ and B” and compute the fiber of the map

HOIIlAr (B,, B") — HOHIAI(B’, B)
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Since B" ~ B ®pgumz) B, we see that this fiber is also the fiber of the natural map
Homy/(B’, B) — Homa/(B', B & Mg[1]).
Base changing from A’ to A, we are studying the homotopy fiber of
" Homa(B, B) — Homg(B, B & Ms[1)).

This is nonempty if and only if B’ and B" are equivalent as small extensions, and in this
case is a torsor for Homy, (Lp/a, Mp) as desired. O

3.4 Smooth and Etale Morphisms

In this section, we will explain how to generalize the notion of smooth and étale ring homo-
morphisms to simplicial commutative rings. We begin with a few general remarks.

Let {A,} be a diagram in S€R having limit A. If : 8CR — § is any functor, then there
is a natural map

¢ F(A) — lim F(Aq).

If F is a corepresentable functor given by F(R) = Homger(B, R) for some B € §CR, then ¢
is an equivalence for any diagram {A4,}. If F is representable by a geometric object which
is not affine, then it is unrealistic to expect that ¢ is an equivalence for arbitrary diagrams.
However we should still expect that ¢ will be an equivalence in cases where the limiting
algebra A has a geometric interpretation.

Definition 3.4.1. Let T : SCR — 8 be a functor. We shall say that F is nilcomplete if, for
any A € SCR, the natural map F(A4) — lim{F(r<,A)} is an equivalence.

_ We shall say that F is infinitesimally cohesiveif, for any A € SCR and any small extension
A of A by an A-module M, the natural map

F(A) = F(A) Xgaommy F(A)

is an equivalence.
We shall say that JF is cohesive if for any pair A — C, B — C of surjective morphisms
in S8CR, the induced map F(A x¢ B) — F(A) x5y F(B) is an equivalence.

More generally, we shall say that a transformation ¥ — ¥ is nilcomplete (infinitesimally
cohesive, cohesive) if the fiber product F ®g Spec B is nilcomplete (infinitesimally cohe-
sive, cohesive), for any n € F'(B). Here we let Spec B denote the corepresentable functor
Homser(B, o).

Remark 3.4.2. Let F be a functor $€R — 8. The condition that F be nilcomplete and
infinitesimally cohesive mixes very well with the requirement that F have a cotangent com-
plex. Suppose, for example, that A — B is a 1-connected morphism in 8€R, and we wish to
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study the fiber of F(A) — F(B). In this case, we may write A as the inverse limit of tower of
successive small extensions B, of B. Since the structure maps of this tower become highly
connected, the nilcompleteness of F implies that F(A4) ~ lim{F(B,)}. Moreover, each B,
is an infinitesimal extension of B, by some B,-module M. The infinitesimal cohesiveness
of F tells us that F(Br+1) can be computed in terms of F(B,) and F(B, & M), and the
relationship between these spaces is controlled by the cotangent complex of F.

Definition 3.4.3. Let T : ¥ — F be a natural transformation of functors ¥, F : S€R — 8.
We shall say that T is

o weakly formally smooth if it has a relative cotangent complex Ly, which is the dual
of a connective, perfect complex.

o formally smooth if it is weakly formally smooth, nilcomplete, and infinitesimally cohe-
sive.

e formally étale if it is formally smooth and Ly, 5 = 0.

Remark 3.4.4. A transformation T : ¥ — ¥ is formally étale if and only if it satisfies the
following lifting property: for any small extension B — B, the natural map ¢ : F(B) —
F(B) x5 F(B) is an equivalence.

The same reasoning shows that if T' is formally smooth, then the map ¢ is always sur-
jective. However, our definition of formal smoothness places a much stronger condition on
the functor T it asserts that the fiber of ¢ is under good control, and in some sense finite
dimensional. We remark that this is not analogous to the standard definition of formal
smoothness, which requires only the lifting property and not the finite dimensionality.

Proposition 3.4.5. Let T : F — G be a formally smooth transformation of functors SCR —
8. Let f : A — B be a 1-connected morphism in SCR. Then the natural map ¢ : F(A) —
F(B) xg(m) G(A) induces a surjection on connected components. If T is formally étale, then
¢ is an equivalence.

Proof. Realize A as the inverse limit of a tower of small extensions of B. O
Corollary 3.4.6. Let F — § be a formally étale transformation of functors SCR — 8.
Let f : A — B induce an tsomorphism myA ~ moB. Then the natural map ¢ : F(A) —
F(B) xgm) 9(A) is an equivalence.

Proof. Let C'= myA =~ mpB. Proposition 3.4.5 implies that the result holds for the morphisms
A— Cand B— C. It follows easily from this that the result holds for A — B. O

Definition 3.4.7. Amap f: A — B in 8CR is étale (smooth) if it is formally étale (formally
smooth) and almost of finite presentation.
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Example 3.4.8. Let A € 8CR, and let a € moA. Then A[2] is an étale A-algebra. More
precisely, take the free A-algebra A[z], and let A[z] be defined by attaching a 1-cell to kill
(za — 1) € mA[z]. One can then easily check that Homgen(A[2], B) C Homger(A, B) is the
union of those connected components for which the induced map mpA — 7o B carries a into
an invertible element in mqB. Using this description it is easy to check that A[i] is formally
étale over A; since it is of finite presentation, it is étale over A.

Proposition 3.4.9. Let T : A — A’ be a morphism in 8CR. The following conditions are
equivalent:

1. The morphism T 1s formally smooth, and A’ is locally of finite presentation over A.
2. The morphism T is formally smooth, and A’ is almost of finite presentation over A.

3. The morphism T is formally smooth, and moA’ is a finitely presented algebra over mpA
in the category of ordinary commutative rings.

4. The morphism T is flat, and the induced morphism myA — moA’ is a smooth homo-
morphism of ordinary commutaetive rings.

Proof. Tt is clear that (1) implies (2) and that (2) implies (3). Suppose that (3) is satisfied.
Considering small extensions of ordinary commutative rings, we deduce that 7oA — mA’
is formally smooth in the usual sense so that mpA’ is a smooth myA-algebra in the sense
of ordinary commutative algebra. In particular, mgA’ is flat over mgA. Suppose first that
moA’ = (moA)[z1,...,zn)/(f1,- .-, fx), where k x k-minors of the Jacobian matrix of the
relations {f;} generate the unit ideal of mgA. In this case, we use the same presentation
to define an A-algebra A _A simple calculation then shows that the cotangent complex
Lz /a 18 projective, so that A is a smooth A-algebra. By Proposition 3.4.5, the tsomorphism

moA — mo A lifts to a map A— A By construction, the natural map f : Lzia ®zA = Laya
is a map of projective A’-modules which induces an isomorphism on 7. It follows that f
is an equivalence, so that L, i=0 By Corollary 3.2.17, we deduce that A — A’ is an

equivalence. Since A is flat over A, we get A’ flat over A.

In the general case, we know that there exists a presentation for moA’ having the above
form Zariski locally on mgA’. The flatness of A’ over A is equivalent to the assertion that
certain maps (7, A) ®mpa m0A" — 7, A’ be isomorphisms. This statement is local for the
Zariski topology on mpA’; thus we deduce that (3) implies (4).

Now assume (4). The projectivity of L4/ 4 is local for the Zariski topology on mA', as is
the property of being locally of finite presentation over A. Thus, we may assume that moA’
admits a presentation as above. Lift this presentation to construct a flat A-algebra A and
amap g: A — A’ Since g induces an isomorphism on 7, the flatness of A and A’ over A
implies that g is an equivalence. Since A is formally smooth over A and finitely presented
by construction, we deduce that A’ is formally smooth over A. O

From Proposition 3.4.9 we can easily deduce the analogue for étale morphisms:
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Corollary 3.4.10. Let T : A — A’ be a morphism in 8CR. The following conditions are
equivalent:

1. The morphism T is formally étale and A’ is of finite presentation as an A-algebro.

2. The morphism T is formally étale and A’ is locally of finite presentation as an A-
algebra.

3. The morphism T 1is formally étale and A’ is almost of finite presentation over A.

4. The morphism T s formally €tale, and moA’ is a finitely presented algebra over myA in
the category of ordinary commutative rings.

5. The morphism T is flat and the induced morphism mgA — moA’ is an étale homomor-
phism of erdinary commutative rings.

Proof. The equivalence of (2), (3), (4), and (5) follows from Proposition 3.4.9. It is clear
that (2) implies (1); the reverse implication follows from the vanishing of L as/4. d

Corollary 3.4.6 implies that if f : A — B is a morphism in S8CR inducing an isomorphism
moA =~ moB, then the base change functor from étale A-algebras to étale B-algebras is fully
faithful. We next study the essential surjectivity of this functor:

Proposition 3.4.11. Let f : A — B be a morphism SCR which induces an isomorphism
noA ~ woB. Let B’ be a smooth B-algebra. Then there ezists a smooth A-algebra A' and an
equivalence B’ ~ B®,4 A'.

Proof. Suppose first that B is discrete. Then f is 1-connected, so that A may be obtained
as the inverse limit of a tower of increasingly connected small extensions

..—’A2—>A1—>A0=B.

It suffices to construct a compatible family {A} of smooth algebras over the family {A,};
then we can construct A’ as the inverse limit. We may therefore reduce to the case where 4
is a small extension of B by some B-module M. This small extension is classified by some
s € Homyy, (Lp/z, M[1]). Consider the exact triangle '

Lp/z ®8 B' — Lpyz — Lpp.

Since Lp/p is projective, we deduce that m_; Homy, (Lp/5, M[1]) = 0, so that s ®p B’
factors through some map s’ : Lg:;z — M|[1]®p B’. This map classifies a small extension A’
of B"by M ®p B'. It is easy to see that A’ is flat over A, hence smooth over A; moreover,
the factorization of s through s’ gives an identification of B’ with A’ ® 4 B.

We now pass to the general case. Using the special case treated above, we see that
B’ ®p mB can be lifted to a smooth A-algebra A’. Then A’ ® 4 B is a smooth B-algebra
which lifts B’ ®g wgB. It suffices to show that A’ ®4 B is equivalent to B’. Arguing
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inductively as above, it suffices to show that if B — C is a small extension of C' by the
C-module M, and B’, B” are smooth B-algebras, then any equivalence B @5 C — B"®pC
of C-algebras can be lifted to an equivalence of B-algebras. The obstruction to this lifting
lies in o Homyv,, (Lp/p, M[1] ®p B"), which vanishes since Lp:/p is projective. O

Remark 3.4.12. Proposition 3.4.11 is a generalization of the following classical fact: if X
is a smooth affine algebraic variety, then any nth order deformation of X can be extended
uniquely to an (n + 1)st order deformation of X. This is because the obstruction to the
existence and uniqueness of such an extension lie in H*(X,Tx) and H'(X, T), which vanish
when X is affine.

For A € SCR, we let S(‘?fRf,f/ denote the full subcategory of 8€R4, consisting of étale

A-algebras. If B is an A-algebra, then A’ — A’ ®4 B determines a functor S(:’iRﬁf ;= 8(‘332‘2 /-
The following result plays a key philosophical role in the theory:

Theorem 3.4.13. Let ¢ : A — A’ be a morphism in SER which induces an isomorphism
oA =~ mpA’. Then the base-change functor ¢ : semi{, — SCRY, ; 15 an equivalence of oco-
categories.

Proof. Corollary 3.4.6 implies that ¢ is fully faithful. The essential surjectivity follows from
Proposition 3.4.11. O

Remark 3.4.14. We may interpret Theorem 3.4.13 as saying that the étale topos of a sim-
plicial commutative ring A is identical with the étale topos of its ordinary ring of connected
components myA. This means that when we start gluing things together to make derived
schemes, the gluing data are not really any more complicated than in classical algebraic
geometry.

One should think of Theorem 3.4.13 as analogous to the classical assertion that the étale -
topology of a commutative ring A does not depend on the nilradical of A. Elements in the
higher homotopy groups {m;A};»0 may be thought of as “higher order nilpotent” elements of
the structure sheaf of Spec A. Like nilpotent elements, they have no classical interpretation
as functions and do not affect the topology of Spec A.

We conclude this section with a discussion of a weaker smoothness property:

Definition 3.4.15. A morphism A — B in 8CR is quasi-smooth if B is almost of finite
presentation over A and Lp/4 has Tor-amplitude < 1.

Example 3.4.16. If k is a field, and A is a discrete k-algebra, then A is almost of finite
presentation if and only if Spec A is a local complete intersection over Spec £ in the classical
sense.

We note that if B is quasi-smooth over A, then B is locally of finite presentation over
A (since Lgs is almost perfect and of finite Tor-amplitude, and therefore perfect). Any
smooth A-algebra is quasi-smooth. Moreover, if B and B’ are quasi-smooth over A and
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admit maps C — B, C — B’ from some smooth A-algebra C, then B x¢ B’ is a quasi-
smooth A-algebra (to prove this, just examine the cotangent complexes). Moreover, all
quasi-smooth A-algebras arise in this way (at least locally). Indeed, if B is quasi-smooth
over A, then there exists a surjection C = A[zy,...,z,] — B. Then P = Lp/aj,, z.)[—1] is
a projective B-module. Localizing C and B if necessary, we may suppose that P is free, and
therefore B is obtained from C by killing a finite sequence of elements {y;,...,ym} € mC.
Now B ~ C ®4jy,,...ym] A-

The presentation given above shows that B is of finite Tor-amplitude over C (since A has

Tor-amplitude < m over Afyi, ..., ym]). Since C is flat over A, we may deduce the following:

Proposition 3.4.17. If A — B is a quasi-smooth morphism in SCR, then B is of finite
Tor-amplitude as an A-module.

The class of quasi-smooth morphisms is interesting because it seems to be the most
general setting in which one has a good theory of virtual fundamental classes. This will be
discussed in great detail in [23].

3.5 Properties of Modules and Algebras

At this point, we have introduced many properties for algebras and modules over a simplicial
commutative ring (most of which generalize classical notions from commutative algebra).
The goal of this section is summarize some of their interrelationships.

Definition 3.5.1. Let P be a property of modules over a simplicial commutative ring A.
We shall say that P is stable under arbitrary (étale, flat, smooth) base change if whenever
an A-module M has the property P and B is an arbitrary (étale, flat, smooth) A-algebra,
then the B-module B ® 4 M has the property P.

We shall say that P is local for the flat (étale, smooth) topology if it has the following
properties:

e P is stable under flat (étale, smooth) base change.

e Given a finite collection of objects A; € SCR and A;-modules M;, if each M, has

the property P as an A;-module, then the product []. M; has the property P as a
I1; Ai-module.

e Whenever B is faithfully flat (étale and faithfully flat, smooth and faithfully flat) over
A and M is an A-module such that the B-module B ® 4 M has the property P, then
M also has the property P.

If P is a property of A-algebras, rather than A-modules, then the notions of stability
under arbitrary (flat, étale, smooth) base change and locality for the flat (étale, smooth)
topology are defined similarly.

The following proposition is easy and will henceforth be used without mention:
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Proposition 3.5.2. e The following properties of A-modules are stable under arbitrary
base change: freeness, projectivity, flatness, faithful flatness, connectivity, being almost
connective, being of Tor-amplitude < n, being of finite presentation, being perfect, being
perfect to order n, being almost perfect, being zero.

o The following properties of A-algebras are stable under arbitrary base change: being of
finite presentation, being locally of finite presentation, being of finite presentation to
order n, being almost of finite presentation, flatness, faithful flatness, being étale, being
formally étale, smoothness, formal smoothness, quasi-smoothness.

The next proposition is little bit more difficult, but it is easily deduced from the cor-
responding flat descent theorems in classical algebraic geometry. See [11] for an extensive
discussion.

Proposition 3.5.3. o The following properties of A-modules are local for the flat topol-
ogy: flatness, faithful flatness, being n-truncated, being connective, being elmost con-
nective, being of Tor-amplitude < n, being perfect, being perfect to order n, being almost
perfect, being zero.

o The following properties of A-algebras are stable under flat descent: being locally of
finite presentation, being of finite presentation to order n, being almost of finite presen-
tation, being étale, being smoothness, being formally étale, formal smoothness, quasi-
smoothness.

Definition 3.5.4. Let P be a property of morphisms in 8€R. We say that P is stable under
composition if it satisfies the following conditions:

e Any equivalence has the property P.

e If A - B and B — C are morphisms with the property P, then the composition
A — C has the property P.

e If a morphism f : A — B has the property P, then any morphism homotopic to f also
has the property P.

Proposition 3.5.5. The following properties of morphisms are stable under composition:
being of finite presentation, being locally of finite presentation, being almost finite presen-
tation, being étale, being formally étale, smoothness, formal smoothness, flatness, faithful
flatness, quasi-smoothness.

Proposition 3.5.6. Let A € 8CR, and let B and C be A-algebras which are of finite pre-
sentation (locally of finite presentation, almost of finite presentation, étale, formally étale)
over A. Let f be any A-algebra morphism from B to C. Then C is of finite presentation
(locally of finite presentation, almost of finite presentation, étale, formally étale) over B.
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Definition 3.5.7. Let P be a property of morphisms of simplicial commutative rings. We
shall say that P is local on the source for the flat (étale, smooth) topology if it satisfies the
following conditions:

e Given any finite collection of morphisms f; : A — B; having the property P, the
product morphism A — II; B; has the property P.

eIfALB%LCisa composable pair of morphisms such that g is faithfully flat (étale
and faithfully flat, smooth and faithfully flat), and g o f has the property P, then f
has the property P.

Proposition 3.5.8. o The following properties of morphisms are local on the source for
the étale topology: étaleness, formal étaleness.

o The following properties of morphisms are local on the source for the smooth topology:
being locally of finite presentation, being of finite presentation to order n, being almost
of finite presentation, smoothness, formal smoothness, quasi-smoothness.

o The following properties of morphisms are local on the source for the flat topology:
flatness, faithful flatness.

We next justify some terminology which was introduced earlier by showing that in a
precise sense, B is locally of finite presentation over A if and only if B can be “covered” by
algebras which are of finite presentation over A:

Proposition 3.5.9. Let f : A — B be a morphism in S8ER. The following are equivalent:

1. B 1s locally of finite presentation as an A-algebra.

2. There ezists an étale B-algebra C which is faithfully flat over B and of finite presen-
tation over A.

Proof. 1f (1) is satisfied, then Lg/4 is perfect. Since every projective moB-module becomes
free Zariski-locally on myB, there exists a faithfully flat, étale myB algebra moC such that
Leja =~ Lpia ®p C is finitely presented, where C denotes the étale B-algebra lifting 7,C.
Then C' is of finite presentation over B, hence locally of finite presentation over A; since
Lcya is finitely presented, it is of finite presentation over A. This proves (2).

Assuming (2), we deduce that moB is a finitely presented myA algebra using classical
descent arguments for ordinary commutative rings. Now is suffices to show that Lp/a is
perfect. By flat descent, it suffices to show that Lg/s ®p C =~ Lcya is perfect. But Ley4 is
finitely presented by assumption. This proves (1). O
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3.6 Dualizing Modules

The purpose of this section is to describe the derived analogue of Grothendieck’s theory
of dualizing complexes. It turns out that Grothendieck duality theory can be adapted to
derived algebraic geometry with very little additional effort, perhaps because the theory
already has a bit of a derived flavor. We shall refrain from giving a complete exposition of
this topic, since it will not be needed in this paper. However, we will need one component
of this theory: the theory of dualizing modules in the “affine” case.

Definition 3.6.1. Let A € SCR be Noetherian, and let K be an A-module. We shall say
that K is a dualizing module if it has the following properties:

1. The module K is truncated and coherent.
2. The natural map of spectra A — Homyr, (K, K) is an equivalence.

3. The module K has finite injective dimension. That is, there exists n > 0 such that for
any discrete A-module M, the A-module Homy, (M, K) is (—n — 1)- connected (In
this case we shall say that K is of injective dimension < n.)

Remark 3.6.2. If A is a discrete commutative ring, then the notion of a dualizing module
for A in the sense described above is equivalent to the notion of a dualizing compler: see
[13].

Remark 3.6.3. If A is discrete and K is a dualizing module for A, then we may take M = A
in the third condition above, and thereby deduce that 7; K = 0 for i < 0. A similar argument
may be applied if A is n-truncated for some n. In the general case where A has infinitely
many nonvanishing homotopy groups, there is no reason to expect a dualizing module K to
satisfy mK = 0 for 7 < 0. This is one feature of the derived duality theory which stands
in sharp contrast to classical duality theory, and it leads to a few extra complications in the
proofs given below.

Theorem 3.6.4. Let A € SCR be Noetherian, and suppose that K is o dualizing module.
We define MY to be the A-module Homyy, (M, K).

1. The functor M — MY induces a contravariant equivalence from the oo-category:of
coherent A-modules to itself.

2. If M 1is coherent, then the natural map M — (MY)Y is an equivalence.
3. Let M be a coherent A-module. Then M is almost perfect if and only if MY is truncated.

Proof. We first show that if M is coherent, then MV is coherent. It suffices to show that each
homotopy group m; MV is finitely generated as a mgA-module. Since MY = lim(m>_;M)Y, we
deduce from the finite injective dimensionality of K that mMY = m;(m>_;M)" for j large.
Thus, we may replace M by 7>_;M and suppose that M is almost perfect.
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If we suppose that K is m-truncated, then m;M" depends only on m;M for j < m — 1.
Thus, we may replace M by M’, where M' — M is a highly connected map with M’
finitely presented. We thereby reduce to the case where M is finitely presented. Using the
appropriate exact triangles, we may reduce to the case where M = A. Then MY = K which
is coherent by assumption.

To complete the proof of (1), it will suffice to prove (2) (since (2) exhibits the duality
functor as its own homotopy inverse). Arguing as above, we note that 7;(M")Y depends
on only finitely many homotopy groups of MV, which in turn depend on only finitely many
homotopy groups of M. Thus we may again reduce to the case where M is perfect, and then
to the case where M = A. Then (M) = KY ~ A, by the assumption that K is dualizing.

The proof of (3) is simple and left to the reader. O

As with the classical theory of dualizing complexes, it is easy to see that dualizing modules
are in good supply:

Example 3.6.5. Let R be a (discrete) Gorenstein local ring. Then K = R is a dualizing
module for R.

Example 3.6.6. Let A € SCR be Noetherian with a dualizing module, and let B be an
+A-algebra which is almost perfect as an A-module. Then K’ = Hom4(B, K) is a dualizing B-
module. This follows easily from the adjunction formula Homyy, (M, K) = Homyy, (M, K).

From Example 3.6.6, we deduce that if A has a dualizing module, then 7y A has a dualizing
module. In more classical language, this dualizing module is a dualizing complez in the sense
of Grothendieck. The existence of such a dualizing complex implies that myA has finite Krull
dimension (see [13]). We shall say that A is of finite Krull dimension if mpA is of finite Krull
dimension, so that any Noetherian A € SCR having a dualizing module is of finite Krull
dimension.

Lemma 3.6.7. Let A € SCR be Noetherian and let K be a truncated A-module. Then K is
of injective dimension < n if and only if 7, Homy, (M, K) for each i < —n and each finitely
generated discrete A-module M.

Proof. Replacing K by K|n], we may suppose that n = 0. Replacing A by mpA and K by
Homyy, (mpA, K'), we may suppose that A is discrete. Since X is truncated, we may represent
K by a complex

0—-1,— I,y — ...

of discrete, injective A-modules. Let I denote the A-module represented by the complex
O—-I,—-Ih1—. .21, 20— ...

Then I is of injective dimension < —1 and there is a triangle I’ — K — I, where I’ is
O-truncated. To complete the proof, it suffices to show that I’ is discrete and is an.injective
object in the abelian category of discrete A-modules.
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For any discrete A-module M, we obtain a long exact sequence
.. — m; Homag, (M, I') — m; Homyy, (M, K) — m Homyy, (M, I) — ;-1 Hompg, (M, I') — ...

This exact sequence implies that m; Homyg, (M, I’} = 0 for 2 < 0 when M is finitely generated.
In particular, taking M = A, we deduce that I’ is discrete.
If
0—-M MM -0

is an exact sequence of finitely generated discrete A-modules, then the vanishing of 7_; Homa, (M", I')
implies that the induced sequence

0 — 7o Homy, (M”, I') — o Homay, (M, I') — 7o Homyy, (M', I') — 0

is exact. Since A is Noetherian, it follows that the induced map I’ — Homyy,(J, I) is
surjective for any ideal J € A. Using Zorn’s lemma we may deduce that I’ is injective. [

Theorem 3.6.8. Let A € 8CR be Noetherian. Suppose that A has a dualizing module. If B
is any A-algebra which is almost of finite presentation, then B also has a dualizing module.

Proof. We may realize B as an almost perfect Az, ..., T ] module for some map A[zy, ..., %] —
B. Using Example 3.6.6, we may reduce to the case where B = A[zy, ..., z,). Working by
induction on n, we may reduce to the case where B = Alz].

Let K be a dualizing module for A. We claim that K[z] = K®4A[z] is a dualizing module
for Alz]. It is clear that K[z] is truncated and coherent. We next claim that the formation of
K[z] is compatible with “finite” base change in A. Namely, suppose that A — A’ expresses
A’ as an almost perfect A-module. Then K’ = Homyy,, (A’, K) is a dualizing module for A’.
We claim that the natural map K'[z] — Homay(A'[z], K[z]) is an equivalence. We may
rewrite the target as Homyy, (4, K{z]) = Homy, (A', ®:Kz'). Since A’ is almost perfect as
an A-module, Homyy, (A’, ¢) commutes with infinite direct sums when restricted to truncated
modules. Since K is truncated, the claim follows.

We now prove that K[z] has finite injective dimension as an A[z]-module. Suppose
that K is of injective dimension < n. The existence of K implies that A has finite Krull
dimension. It follows that A[z] has Krull dimension < m for some m. We will show that
K |z] has injective dimension < n +m + 1.

It will suffice to show that if M is a finitely generated, discrete A[z]-module, then
m; Hom,, (M, K(z]) = 0 for 1 < —n —m — 1. We will show, more generally, that if the
support of M has Krull dimension < j, then m; Homy, (M, K(z]) =0 fori < —n—j - 1.
We prove this by induction on j. Filtering M and working by induction, we may suppose
that M ~ (mA)[z]/p, where p is a prime ideal of (mpA)[z]. Let ¢ = p N mA. Replacing A
by moA/q, we may reduce to the case where A is a discrete integral domain and q = 0. If
p = 0, then Homyy, (M, K(z]) = K[z] = Homx, (A, K)[z], whose homotopy groups vanish
in degrees < —n by assumption.

If p & 0, then we may choose y € p which generates p after tensoring with fraction field
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of A. Then there is an exact sequence
0—- N— Alz]/(y) = M — 0.

To show that m; Homyy,,, (M, K[x]) = 0, it suffices to show that m; Homyw,, (A[z]/(v), K[z]) =
0 = miy1 Homo,, (N, K l:c])) Since the support of V has Krull dimension strictly less than 7,
the vanishing of 71 Homay,,,, (N, K[z])) follows from the inductive hypothesis. Using the ex-
act sequence 0 — Afz] — Alz] — A[z]/(y) — 0, the vanishing of m, Homx,,, (A[z]/(y), K[z])
can be deduced from the vanishing of m; K[z] and ;.1 K[z]. Since i +1 < —n, this follows
from the assumption that K has injective dimension < n (since we have reduced to the case
where A is discrete).

It remains to show that K|z satisfies biduality. We have Homy,  (KT[z], K[z]) =
Homyy, (K, K'[z]). We must show that the natural map A[z] ~ Homyy, (K, KS [z] — Homyy, (K, K|[z])
is an equivalence. It suffices to check this map induces an isomorphism on each homotopy
group m;. Since K[z] has finite injective dimension, we have m; Homy,  (K[z], K[z]) =~
m; Homow, , (721 K [z], K[z]) for & sufficiently small. Similarly, 7; Homay, (K, K) ~ m; Homay, (71 K, K),
so that it suffices to show that the natural map Homy, (751K, K)[z] — Homuy, (751K, K|z])
is'an equivalence. This follows immediately from the assumption'that K[z] is truncated and
T>cK is almost perfect. |

We are now prepared to prove the main result of this section. We remark that the
conclusion of the result does not mention dualizing modules: these instead enter as a tool
in the proof. It seems likely that a more direct proof is possible, which would enable one to
eliminate the hypothesis that A admit a dualizing module. However, we were unable to find
such a proof.

Theorem 3.6.9. Let A € SCR be Noetherian, and suppose that A has a dualizing module K.
Let F: My — 8o be an exact functor. Then there exists an almost perfect A-module M and

an identification of F with the functor Homyg, (M, @) if and only if the following conditions
are satisfied:

1. For each N € My, we have F(N) = lm{F(7<,N)}.
2. The functor I commutes with filtered colimits when restricted to (My)<o.

3. For every finitely generated (discrete) moA-module N, the functor moF(N[—i]) is a
finttely generated module.

4. There ezists an integer n such that m; F(N) = 0 for all N € (M,)<o and all i > n.

Proof. Tt is obvious that all four conditions are necessary. Conversely, suppose that they
are each fulfilled. For each N € My, the A-module structure on N naturally induces an
A-module structure on F(N), so that we may view F as A-module valued.
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Conditions (3) and (4) imply that if N is discrete and finitely generated as a mgA-module,
then F(N) is truncated and coherent. Using condition {4) and induction, we deduce that
F(N) is truncated and coherent whenever N is truncated and coherent.

Let K be a dualizing module for A, and let N — NV be the associated duality functor.
Now set G(N) = F(NV)V. We note that G carries almost perfect A-modules to almost perfect
A-modules. Using the evident A-linearity, one may construct a natural transformation ¢y :
N® G(A) — G(N).

Our next goal is to prove that ¢y is an equivalence whenever N is almost perfect. This
will be achieved in several steps:

e The map ¢4, is an equivalence for any n € Z. This is immediate from the definition.

e If N = N — N” is an exact triangle of almost perfect A-modules, and both ¢ and
¢n~ are equivalences, then ¢y is an equivalence.

e The map ¢y is an equivalence whenever N is finitely presented. This follows by
induction, using the last two steps.

e Since K is a dualizing module, any fixed homotopy group of NV depends on only
finitely many homotopy groups of N. Similarly, condition (4) implies that any fixed
homotopy group of F(N) is unchanged by replacing N by 75,N for n sufficiently
negative. Putting these facts together, we deduce that m; G(IV) ~ m; G(T<pN) for
some n > 0.

e To prove that ¢y is an equivalence, it suffices to prove that ¢y induces an equivalence
on homotopy groups. For sufficiently large n, both m; G(N) and m;(G(A) ® 4 N) depend
only on 7<;y»n N. Thus, if N is almost perfect, then we are free to replace NV by a finitely
presented A-module N’ which closely approximates N in the sense that N/ — N is
(i + n)-connected. We thereby reduce to the case where N is finitely presented which
was handled above.

We now set M = G(A). If N is truncated and coherent, then we have natural equivalences
Homae, (M, N) =~ Homy, (M, Homa, (N, K)) ~ Homma(M @4 N, K) = §(NV) = F(N)

as A-modules. In other words, the functors Homyy, (M, e) and T are equivalent when re-
stricted to k-truncated, coherent modules (for any k& € Z). Since both functors are compatible
with filtered colimits, they have equivalent restrictions to the oo-category of all k-truncated
A-modules. Finally, since both Homy, (M, ®) and F satisfy condition (1) of the proposition,
we deduce that they are equivalent on all of M 4. a
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3.7 Popescu’s Theorem

In this section we discuss Popescu’s theorem, which asserts that a geometrically regular
morphism of Noetherian rings may be approximated by smooth ring homomorphisms. We
will begin by reviewing the requisite commutative algebra.

We first recall that many useful properties of Noetherian rings may be generalized to
relative properties, using the following prescription: a morphism f: A — B is said to have
the property P if f is flat, and if the ring B ® 4 # has the property P whenever « is a residue
field of A. In these cases, we can use this same relative definition in derived commutative
algebra, since the flatness of f implies that B @4 « is a discrete k-algebra.

We will apply this idea to the particular case of geometrically regular morphisms of
Noetherian rings. Recall that a morphism A — B of Noetherian rings is said to be geo-
metrically regular if it is flat and if B ®4 « is a regular Noetherian ring whenever « is a
finite extension of some residue field of A. We will take this as our definition of geometri-
cally regular morphisms of simplicial commutative rings (assumed again to be Noetherian).
Equivalently, a morphism A — B is between Noetherian objects of SCR is geometrically
regular if B is flat over A and wB is a geometrically regular myA-algebra.

We recall the classical version of Popescu’s theorem: '

Theorem 3.7.1. Let f : A — B be a map of (ordinary) Noetherian rings. The map f is
geometrically reqular if and only if B can be written as a filtered colimit of smooth A-algebras.

For a proof, we refer the reader to [33]. We will use this theorem to deduce a version of
Popescu’s theorem for simplicial commutative rings. First, we need several lemmas:

Lemma 3.7.2. Let R be a local Noetherian (discrete) ring with residue field k. Let {z,,...,z,}
be a system of generators for the mazimal ideal m of R, whose images in m/m? are linearly
independent. If Torlz[zl""’z"](R, Z) =0, then R is regular.

Proof. First, suppose that R is the quotient of a regular Noetherian local ring R; Replacing
R by a quotient if necessary, we may assume that the embedding dimensions of R and R are
the same. Then we can lift the sequence {z;} to a regular system of parameters {7;} in R.
This choice gives a factorization of Z[z,...,z,] — R through R. Making use of a change-
of-rings isomorphism, we see that the group Toriz[ml""’z“] (R,Z) is isomorphic to Tor™(R, k).
Since R is local and Noetherian and R is a finite module over E, we deduce that R is a flat
R-module. In particular, it is torsion-free as a R-module, so that R =~ R and R is regular.
In the general case, we note that, the group Tor2“"**"(R Z) is a finite R-module whose
formation is compatible with flat base change in R. Since the completion of R is always the

quotient of a regular local ring, we deduce that the completion of R is regular, so that R is
regular. O

For the statement of the next lemma, we introduce a bit of terminology. An object
R € 3CR will be said to be local if moR is local. In this case, we define the residue field of R
to be the residue field of myR.
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Lemma 3.7.3. Let R € SCR be local and Noetherian with residue field K. Then the following
conditions are equivalent:

1. The ring R is discrete and regular.
2. The homotopy groups m; Ly r vanish for i # 1.

Proof. By Proposition 3.2.16, we have a natural isomorphism m Lg/p with m/m?, where m
denotes the maximal ideal in mR. N
Choose a minimal set of generators {1, ...,z,} for m. Let K = R®zs,, .2, %. Then we

have a natural map K — K which induces an isomorphism on 7. By construction, L /R is
freely generated by elements of degree 1 corresponding to the z;, so that f : Lz, p ®z K —
Ly/r induces an isomorphism on m;. Thus, (2) is equivalent to the assertion that f is an
equivalence. This is in turn equivalent to the assertion that Lg, . = 0. Since K = moK, we

see that (2) is equivalent to the assertion that K = K. It is now clear that (1) implies (2).

We now use the appropriate spectral sequence to compute the homotopy groups of K.
This spectral sequence has E3’-term given by Torf[“"""""](qu, Z). In particular, we have
an exact sequence of low degree terms

Torg[zl """ Zn] (mR,Z) — wlf? — Torlz[“"”‘x"] (moR,Z) — 0.

Now, if (2) holds, then 7; K = 0. The exact sequence shows that TorZFvl(r, R, Z) = 0.
By Lemma 3.7.2, this implies that myR is regular.

Suppose R is not discrete. Choose m minimal such that 7, R # 0. Since 7, R is a finite
module over TR, we see that EJ™ is nonzero. Since mn K = 0, we see that some differential
E,:(mH_r) — E%™ must be nonzero, r > 2. This implies E;("H'l_r} # 0. By the minimality of
m, this is impossible unless 7 = m+1, in which case we get E;(""“") = Tor,ﬁ[_fll""’w"](R, Z) =
0 from the regularity of R. O

Lemma 3.7.4. Let A € SCR be Noetherian, and let M be a connective A-module. Then M
is flat if and only if M @4 & is discrete for any residue field x of A.

Proof. The “only if” direction is clear. For the “if”, let us suppose that M is not flat. Then
there exists a discrete A-module N such that M ® 4 NV is not discrete. Since tensor products
commute with filtered colimits, we may assume that N is finitely presented when regarded
as a mgA-module in the usual sense. Since woA is Noetherian, we may assume N to be chosen
so that its annihilator ideal I C mpA is as large as possible. Replacing A by moA/I and M
by M ®4 (mgA/I), we may assume that A is discrete and that N is a faithful A-module.

We first claim that A is an integral domain. Indeed, suppose that zy = 0 in A. Let
N'={n € N:zn=0} and let N” = N/N’. Then a long exact sequence shows that either
M®4 N or M®s N is nondiscrete. By maximality, this implies that either z = 0 or y = 0.

Let N, denote the torsion submodule of N. Since Nj has a larger annihilator than N,
Ny ®4 M is discrete. Consequently, a long exact sequence shows that (N/Np) ® 4 M must
be nondiscrete. Replacing N by N/N,, we may suppose that /N is torsion-free.
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For any nonzero element z € A, we have a short exact sequence
0—= NS N— N/zN — 0.

Since (N/zN) Q@4 M is discrete, we deduce that multiplication by z induces an isomorphism
on m,(N @4 M) for n > 0. Since this holds for all z € A, it follows that 7,(N ®4 M) ~
Tn({(N ®4 k) ®4 M), where x denotes the field of fractions of A. Replacing N by N ®4 &, we
may suppose that N is a k-vector space. Then N is a direct sum of copies of x. It follows
that K ® 4 M is nondiscrete, and the proof is complete. , O

Theofem 3.7.5 (Derived Popescu Theorem). Let f : A — B be a morphism in SCR.
Assume that A and B are Noetherian. The following conditions are equivalent:

1. For any factorization A — C EN B, where C s locally of finite presentation as an
A-algebra, there exists a factorization C — D — B of g such that D is smooth over
A.

2. The A-algebra B 1is a filtered colimit of smooth A-algebras.
3. The cotangent compler Lp;4 is a flat B-module.

4. The morphism f is geometrically regqular.

Proof. The oo-category 8CR4,/,p is compactly generated. Since it has a final object, its
compact objects form a filtered co-category SGchA /8> moreover, these algebras have B as
their filtered colimit. Condition (1) ensures that the full subcategory of 8€RS, 5 consisting
of smooth A-algebras is cofinal. Consequently, this co-category is also filtered and it has the
same filtered colimit B. Thus, we see that (1) implies (2). The implication (2) implies (3)
is clear because the formation of the cotangent complex is compatible with filtered colimits,
and a filtered colimit of projective modules is flat.

We show that (3) implies (4). Using Lemma 3.7.4, we can reduce to the case where A is
a field k. In this case, we need to show that the flatness of Lg sk implies that B is discrete
and regular. Replacing B by one of its localizations, we may assume that 7B is local with
residue field K. Now consider the triangle

Lp/y ®s K — Lg/y — Lk/p.

Since Lpx is flat and Ly is 1-truncated, we deduce that Lk/p is 1-truncated. The sur-
jectivity of the map B -+ K then shows that m;Lg/s = 0 for i # 1. By Lemma 3.7.3, we
deduce that B is discrete and regular.

Now suppose that (4) is satisfied. We will deduce (1) using the same argument that
we used in the proof of Theorem 2.5.2. First, since any A-algebra C' which is locally of
finite presentation is the retract of a finitely presented A-algebra, we may reduce to the
case where C is finitely presented. In this case, there exists a finite sequence of A-algebras
A=Cy— ... = C, =C, where each C; is obtained from C;_; by attaching a k-cell for
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some k£ > 0. We will prove, by induction on 7, that there exists a Cj-algebra D; which is
smooth over A, and a factorization of the map C; — B through D;. For i = 0, we simply
take Dy = A.

For the inductive step, let us suppose that D; has already been constructed. We must
show that it is possible to construct D;y;. Replacing C; by D; and C;11 by Cit1 ®¢, Di, we
may assume that C;,; is obtained from D; by adjoining a k-cell for some & > 0. If £ =0,
then Ciy; = Dj[z] is smooth over A and we may take D,y = Cit1.

Suppose next that & > 0, and let C;y, be obtained from C; by attaching a cell to kill
z € m1C; = Torl*(moCi, mx—14). Then the image of z € m,_ 1B = Torg"A(wgB,ﬂkA)
" vanishes. By Theorem 3.7.1, moB is a filtered colimit of smooth myA algebras, so that there
exists a factorization woC;—meD’ — B, where mD)’ is smooth over mpA and the image of
x vanishes in TorgoA(woD’ ,Mr—1A). By Proposition 3.4.11, we can lift 7D’ to a smooth
A-algebra D. Using Proposition 3.4.5, the maps fq : m0C; — mo D’ and go : mo D' — myB can
be lifted to maps f : C; — D' and g : D’ — B. Unfortunately, it is not necessarily that case
that g o f is homotopic to h. Indeed, there is an obstruction § € m; Homu, (L, /4, B)- Let
us regard g as fixed, and try to kill the obstruction by varying f. Since f is ambiguous up to
the group 71 Homp,, (Lc,/a, D' ), we see that an appropriate choice of f exists provided that
¢ lies in the image of m; Homy, (Le,/a, D') — m HOHIMci(Lci /4, B). Replacing D’ by a free
algebra D'[y1,. . ., Ym|, we may ensure that the image of 7, D" — m, B is arbitrarily large, so
that the required factorization can be found. Replacing C; by D’ and Ciy1 by Ciq1 Q¢, IV,
we may reduce to the case where x = 0.

Now Cj,1 is the free C;-algebra on a k-cell, having image y € 7 B. Repeating the above
argument, we may find a factorization C; — D" — B with the property that y lies in
the image of m D" — mB. It follows immediately that C;;; — B factors through D", as
desired. |

Remark 3.7.6. The equivalence (3) < (4), for ordinary commutative rings, is proven in
(1]. We note that conditions (1), (2), and (3) can be formulated in the absence of any
Noetherian hypotheses on the rings A and B. In the non-Noetherian setting, it is easy to see
that (1) < (2) = (3). It seems reasonable to conjecture that (3) = (1), at least when B is
flat over A. The proof given above shows that if B is flat over A, the implication (3) = (1)
follows in general once it is known for ordinary commutative rings.

Popescu’s theorem is frequently useful in the following situation. Let A € SCR be
Noetherian and local (meaning that moA is Noetherian and local and each mA is a ﬁnitg
moA-module). In §6, we shall define a completion A, which will have the property that m; A
is the completion of m;A with respect to the m-adic topology, where m C 7oA denotes the
maximal ideal. Then A is a flat A-algebra. Under reasonable circumstances (for example,
whenever mpA is excellent), the morphism A — A is geometrically regular. Theorem 3.7.5
implies that A is a filtered colimit of smooth A-algebras. This gives a strong form of the Artin
approximation theorem, which can be used to simplify the proof of Artin’s representability
theorem: see [8]. Our proof will make use of the same strategy, together with some additional
simplifications which become available in the derived setting.
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Chapter 4

Derived Schemes

In this section, we explain how to use the “derived commutative algebra” developed in §3
to define derived schemes. We will begin in §4.1 with a discussion of sheaves on oo-topoi
with values in an oo-category €, and discuss an appropriate theory of classifying co-topoi.
In §4.2, we will specialize to the case where € = SCR and consider various topologies on
commutative rings along with their generalizations to the case of simplicial commutative
rings.

In §4.3 we will discuss the construction of “spectra” (in the sense of commutative alge-
bra) based on these topologies. Our approach to this question is somewhat less direct than
is usual: we first define the spectrum of a ring (or, more generally, a SCR-valued sheaf) by
a certain universal property. We then prove the existence of an object having this universal
property by a somewhat familiar-looking explicit construction. Our setup is very general,
and the ideas could conceivably be useful for studying algebraic structures other than com-
mutative rings. It is also well-adapted to relative situations (in the case of Zariski spectra
of commutative rings, it recovers the relative spectrum construction discussed in [12]).

The essentially combinatorial origin of the spectrum construction implies that the under-
lying (oo)-topoi of derived schemes have good finiteness properties, which we spell out in §4.4.
Finally, in §4.5 we give the definition of a derived scheme, and compare derived schemes with
classical algebro-geometric notions such as schemes, algebraic spaces, and Deligne-Mumford
stacks.

The purpose of this section is to give a definition of derived schemes which is analogous
to the original definition of a scheme: it is something like a space, equipped with a sheaf
of rings, which locally takes a particularly simple form. In some more abstract approaches
to the theory, one views a scheme as a certain kind of set-valued functor on the category of
commutative rings. In §4.6 we show that a derived scheme X is determined by the S-valued
functor A — Hom(Spec 4, X) on SCR, so that it is also possible to give a purely functorial
approach to derived algebraic geometry. This paves the way for our discussion of derived
stacks in §5. In fact, our development of the theory of derived stacks is for the most part
independent of the material of the present section, so the reader can skip ahead to §5 with
little loss of continuity.
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4.1 Structure Sheaves and Classifying oo-Topoi

We begin our discussion with some elementary definitions concerning oo-topoi equipped with
“structure sheaves”. For the time being, these may take values in any oo-category €, though
the main case of interest to us will be when € = SCR.

Definition 4.1.1. Let X be an oco-topos, and € any oo-category. A C-valued presheaf on X
is a contravariant functor X — €. A C-valued sheaf on X is a C-valued presheaf which carries
colimits into limits. If f : X — Y is a geometric morphism of oo-topoi, and O is a €-valued
(pre)sheaf on X, then f, O is the C-valued sheaf on Y obtained by composing the pullback
functor f* with the functor O.

Remark 4.1.2. One advantage of working with co-topoi is that Definition 4.1.1 becomes
very simple. If we instead worked with ordinary topoi (or n-topoi), then the above definition
would be correct only if € is itself an ordinary category (or an n-category). Thus, even
though we are primarily interested in oo-topoi which are associated to ordinary topoi, there
is some value in regarding them as oo-topoi if we wish to discuss sheaves with values in an
0O-category.

Remark 4.1.3. We have chosen to call a limit-preserving functor -0 : X — € a C-valued
sheaf on X. One might just as well refer to such a functor as a C-valued object of X. For
example, if € is the (ordinary) category of abelian groups, then one may identify C-valued
sheaves on X with the category of abelian group objects in the ordinary category 7<o X of
discrete objects in X.

The former terminology seems more in line with the point of view that an oo-topos is
some kind of generalized topological space, while the latter emphasizes the role of X as a
“place where one can do mathematics”. Both points of view are valuable, but we feel that
the first is more in line with the objective of this paper.

Example 4.1.4. Let € = 8 be the oo-category of spaces. Then the C-valued sheaves on X
are precisely those presheaves of spaces on X which transform colimits into limits; in other
words, they are precisely the representable presheaves on X. Thus, X may be identified with
the oco-category of 8-valued sheaves on X.

Although it makes sense to talk of C-valued sheaves for any co-category €, most ele-
mentary constructions require additional hypotheses on € such as the existence of limits or
presentability. The following proposition shows that in the presence of such hypotheses, the
theory of C-valued sheaves is reasonable.

Proposition 4.1.5. Let X be an co-topos and € a presentable co-category, and let Shv(X, C)
denote the oo-category of C-valued sheaves on X.

1. The inclusion functor Shv(X,€) C C*" admits a left adjoint.

2. The co-category Shv(X, €) is presentable.
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3. Suppose that f : X — Y is a geometric morphism of co-topoi. Then f, : Shv(X,C) —
Shv(Y,€) has a left adjoint f*.

The proof is a technical bit of oo-category theory in the spirit of the second section of
(22]. We will sketch it for completeness, but it may be skipped without loss of continuity.

Proof. Choose a regular cardinal « so that X = Ind(X,), where X, denotes the full subcat-
egory of X consisting of k-compact objects. Since X, generates X under colimits, we have
fully faithful inclusions

Shv(X, @) C €% C €7,

where the second inclusion identifies G with the oo-category of C-valued presheaves on X
which are compatible with s-filtered colimits. The second inclusion has a left adjoint, given
by restriction to X.. Since X, is essentially small, the middle co-category is presentable.
To complete the proofs of (1) and (2), it will suffice to show that the right-hand inclusion
admits a left adjoint L, which is accessible when regarded as an endofunctor of €%, For
« sufficiently large, this inclusion is simply the pushforward along the geometric morphism
X — 8%, s0 it will suffice to prove (3) in the special case where Y = X%,

A functor F: X, — C% belongs to D if and only if it commutes with all xk-small colimits
in X,.. Since X, is essentially small, the collection of such diagrams is bounded in size.
The functor L may be constructed by a standard transfinite procedure which forces F to be
compatible with every such diagram. We leave the details to the reader.

We now prove (3) in general. Suppose first that € = § is the oo-category of spaces.
Then 8hv(X, @) is equivalent to X. Assertion (3) follows from the definition of a geometric
morphism.

If € is the co-category of presheaves on some small oo-category Cp, then the existence
and accessibility of the left adjoint of (3) may be proven by working componentwise.

In the general case, we may realize the presentable co-category € as the essential image
of some localization functor L : P — P, where P is an oo-category of presheaves. ‘We have
already established the existence of f* : Shv(Y,P) — Shv(Y,P). The pullback functor is
defined on Shv(Y, €) by applying f* to obtain an object of 8hv(X, P), localizing it to obtain
a C-valued presheaf on X, and then sheafifying this presheaf. O

Remark 4.1.6. Proposition 4.1.5 is extremely formal, and never really used the fact that
we are dealing with sheaves on oco-topoi. The price, of course, is that the existence of a left
adjoint tells us very little about how to compute it.

We can say much more about the theory of C-valued sheaves if we impose further condi-
tions on C. Let us call an oo-category C compactly presented if it is presentable and generated
by its compact objects. Equivalently, € is presentable if and only if there is an equivalence
€ ~ Ind(Cp), where Cp is an essentially small co-category which admits finite colimits. In
fact, we may take Cp to be the subcategory of all compact objects of C.
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If € is a fixed oo-category, then we shall refer to a pair (X, Q) consisting of an co-topos
X and a C-valued sheaf O on X as a C-structured oo-topos. A morphism (X, Ox) — (Y, Oy)
of C-structured oo-topoi consists of a pair (f, ¢) where f : X — Y is a geometric morphism
and ¢ : Oy — f, O is a morphism of C-valued sheaves on Y. A morphism (f, ¢) is said to be
étale if f is an étale morphism and the adjoint map f* Oy — Ox is an equivalence (it is easy
to see that the adjoint f* always exists when f is étale: it is simply given by restriction).
The C-structured co-topoi form a (0o, 2)-category. In general, there is no reason to expect
the morphism oo-categories Hom((X, Ox), (4, Oy)) to be small (this is not even true when €
is trivial). However, these morphism categories are always accessible when € is presentable
(this may be proven using straightforward cardinality estimates).

Proposition 4.1.7. Let F : € — € be a functor between compactly presented oo-categories.
Suppose that F' preserves all colimits. Then I has a left edjoint G. We may regard G as
also defined on C'-valued (pre)sheaves on co-topoi. If G : €' — € commutes with filtered
colimits, then the functor G commules with sheafification and with pullback along geometric
morphisms.

Proof. The existence of the adjoint G follows from the adjoint functor theorem. Let X be an

oo-topos. The sheafification of a presheaf may be obtained by first restricting the presheaf to

X, for a large regular cardinal x, and then applying the pullback along the natural geometric
. P o 5 . . .

morphism X — 8™ . Since G clearly commutes with restriction, it will suffice to prove that

G commutes with pullbacks.

Let €y denote the full subcategory € consisting of compact objects. Then € is equivalent
to the co category of all functors €7 — 8 which preserve finite limits. Consequently, we see
that a C-valued presheaf on an oo-topos Y may be considered as a functor Y x CF — 8,
which preserves all limits in the first variable, and finite limits in the second variable. This is
equivalent to the category of left-exact functors O : € — Y. Let f: X — Y be a geometric
morphism of oc-topoi. We may then define f* O to be the composite functor f*cO : € — X,
which remains left exact. It is easy to check that f* O has the appropriate mapping property.

If G commutes with filtered colimits, then F' carries compact objects of € into compact
objects of €. If O : (€)*® — Y represents a €'-valued presheaf on Y, then G O is obtained
by precomposition with F|Cp, while f*O is obtained by postcomposition with f*. Since
precomposition and postcomposition commute with one another, we deduce that f* and G
commute. O

Example 4.1.8. Let F : § —» SCR be the “free algebra” functor, which is left adjoint
to the “underlying space” functor G. Since G commutes with filtered colimits, we deduce
that pullback and sheafification of SCR-valued sheaves are compatible with passage to the
underlying spaces.

In the proof of Proposition 4.1.7, we saw that to give a C-valued sheaf on X is equivalent
to giving a left-exact functor €F — X. Giving a functor f : € — X is equivalent to giving
a colimit preserving functor F : §% — X. Moreover, using the fact that X is an co-topos
one sees that f is left exact if and only if F is left exact. In other words, the oco-category of
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@-valued sheaves on X i8 equivalent to the oco-category of geometric morphisms F:X— 8%
In particular, the identity functor from §% to itself gives rise to a universal C-valued sheaf O
on §%. Any C-valued sheaf Ox on any oo-topos X is equivalent to F* O for some (essentially
unique) geometric morphism F : X — g%  Hence, we may say that s is a classifying
co-topos for C-valued sheaves.

Of course, this is only the tip of the iceberg: just as for ordinary topoi, any oco-topos
may be interpreted as a classifying topos for a sufficiently complicated type of structure.
However, we shall only need a slight generalization of the above discussion, modified to take
into account a “topology” on the oo-category C.

Definition 4.1.9. Let C be an oo-category with finite colimits. An admissible topology on
@ consists of the following data:

e A class of morphisms of € called admissible morphisms.

e For each object A in €, a class of families {A — Aq} of admissible morphisms in €
called covering families.

These notions are required to satisfy the following conditions:

e Any morphism equivalent to an admissible morphism is admissible. Any family of
morphisms equivalent to a covering family is also a covering family.

o Any identity A — A is admissible, and the one-element family {A — A} is covering.

e Any composition of admissible morphisms is admissible. If {A — A.} is a covering
family and for each a;, {Ay — Aup} is also covering, then the composite family {A —
App} is covering.

e If A — A’ is an admissible morphism and A — B is arbitrary, then the pushout
B — A']], B is admissible. If a family {A — A,} of admissible morphisms is covering,
and A — B is arbitrary, then the induced family {B — B[], Aa} is covering.

o If a family {A — Aq} of admissible morphisms is covering, then any larger family is
also covering. Conversely, any covering family contains a finite subfamily which is also
covering.

Remark 4.1.10. Several examples of an algebro-geometric nature will be given in the next
section. The only example which will really concern us in this paper is the étale topology on
SCR. In this topology, the admissible morphisms are the étale morphisms, and the covering
families are those which induce covering families in the classical sense after passing to the
ordinary commutative rings of connected components.
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Remark 4.1.11. If C is a small co-category, then an admissible topology on € determines a
Grothendieck topology on the opposite co-category €. More generally, for each A € G, we
obtain a Grothendieck topology on the opposite of the co-category of admissible objects of
C4/. We summarize the theory of Grothendieck topologies on oo-categories in the appendix.
For our applications it will be convenient to work with the slightly more structured notion
of an admissible topology.

Example 4.1.12. For any oc-category € with finite colimits, we may equip € with the trivial
topology: the admissible morphisms are precisely the equivalences, and the covering families
are those families which are nonempty.

Let Cy be a small category with finite colimits and an admissible topology 7, and let
€ = Ind(Cp). We will say that a morphism A — B in € is admissible if there exists an
admissible morphism 4, — By in €y and a morphism Ay — A which identifies B with the
pushout AJ], Bo. Similarly, we shall say that a family {4 — A,} of admissible morphisms
in C is a covering family if there exists a covering family {B — B,} in €, a morphism
B — A, and identifications of each A, with the pushout A[]5 B,. One can easily verify
that this defines an admissible topology on € (note that the proof that admissible coverings
compose requires the assumption that every covering has a finite refinement). An admissible
topology on € is said to be compactly generated if it arises in this way.

Suppose that € is an oo-category with finite colimits, X an co-topos, and O a C-valued
sheaf on X. Let U/ € X be an object and 1 : O(U) — A an arbitrary morphism of €. The
functor '

V — Homgu)(4, O(V))

from X,y to 8 carries colimits into limits, and is therefore representable by an object of
X,y which we shall denote by Sol(¢). The intuition is that the object A admits some
“presentation” over O(U) by generators and relations, which we may think of as variables
and equations. Then Sol(¢) is the “space of solutions” to those equations in the structure
sheaf Q.

Definition 4.1.13. Let C be an oo-category with finite colimits and an admissible topology
T, and let X be an co-topos.

o A C-valued sheaf @ on X is T-local if for any admissible covering {1, : O(U) — Aa},
the family 8ol(+,) forms a covering of U.

¢ A morphism O — O of C-valued sheaves is said to be T-local if, for any U € X and
any admissible morphism % : O(U) — A, the natural map Sol(¢)) — 8ol(¢') is an
equivalence, where ¢’ : O'(U) — A ][, O'(U) is the induced morphism.

More generally, given a morphism (f,®) between C-structured oco-topoi (X,0Ox) and
(Y,0y), we shall say that (f,¢) is T-local if for any U € Y and any admissible mor-
phism ¢ : Oy(U) — A, the induced map f*8ol(x)) — 8ol(¢’) is an equivalence, where
P Ox(f*U) — Ox(f*U) Ly A is the cobase extension of 1.
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Before we can establish the basic properties of T-locality, we need a couple of elementary
lemmas.

Lemma 4.1.14. Let f : X — Y be a geometric morphism of oo-topot, C a compactly presented
co-category, and T a compactly generated, admissible topology on C. Let O be a C-valued
sheaf on 'Y, U € X an object, and {¢o : (f*O)(U) — A,} a finite collection of admissible
morphisms of C.

1. There ezists a surjection U' — U in X, an object V € Y, a map p : U — f*V, a
collection of admissible morphisms {O(V) — B,}, and equivalences (under (f* 0y (M)

B, H (frO)U') = Aq H (f* O)U").
(f~ o))

o(v)

2. If, furthermore, the family {(f*O)(U) — Aq} 15 covering for T, then we may arrange
that the family {O(V) — By} is covering for J.

Proof. We will be content to give the proof of the first part (the proof of the second part
is analogous). Without loss of generality, it suffices to treat the case of a single admissible
morphism (f*O)(U) — A. Since T is compactly generated, there exists an admissible
morphism By, — Ay of compact objects of €, a morphism p : By — (f*©0)(U), and an
identification of A with Ag][g, (f*O)(U). It will suffice to prove that after replacing U by
some cover [/, the morphism p is the pullback of some morphism defined over Y. Since By
is compact, the sheaf
U + Home(Bo, f* O(U))

is the pullback of the sheaf
V — Home(Bqg, O(V)).

Consequently, we may reduce to the case where C = §, which is clear. |

Proposition 4.1.15. Let C be a compactly presented oo-category equipped with a compactly
generated, admaissible topology T. Then:

1. The class of T-local morphisms between C-structured oo-topoi is stable under equiva-
lence.

2. Any equivalence of C-structured oo-topoi is T-local.
3. Any composition of T-local morphisms of C-structured oo-topot is J-local.

4. Let X be an oo-topos, and ¢ : O — O be a T-local morphism between C-valued sheaves
on X. If Q' is T-local, then O is T-local. ‘

5. Let f: X — Y be a geometric morphism of co-topoi. Let O be a C-valued sheaf on Y.
Then the induced morphism (X, f* O} — (Y, 0) us T-local.
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6. Let f : X — Y be a geometric morphism of co-topor. Let O be a C-valued sheaf on Y.
If O is T-local, then so is f*O.

7. Let (f,¢) : (X,0x) — (Y,0y) be o morphism of C-structured spaces. Then (f,¢) is
T-local if and only if ¢ : f* Oy — Oy is T-local.

Proof. Assertions (1) through (4) are obvious (and do not require any compact generation
assumptions). Assertion (5) follows from the fact that T is compactly generated and the fact
that for B € € compact, the correspondence '

F — (U — Home(B,F(U))

commutes with pullback. Assertion (6) is a little bit more subtle: suppose that U € X and
that we are given a covering family {¢/, : (f* O)(U) — AL}. We wish to prove that the family
{8ol(¢},)} covers U. This assertion is local on U and on Y, so we can use Lemma 4.1.14 to
reduce to the case where {1/, } is the cobase extension of a covering family {¢, : O(V') — A,}.
Since Sol(y.) = f*8Sol(ve) by (5), we get the desired result (using the fact that (Y,0) is
T-local).

It remains to prove (7). The “if” direction follows from (5) and (3). For the reverse
direction we again reduce to the local case and apply Lemma 4.1.14. O

Definition 4.1.16. Let C be a compactly presented oo-category with a compactly generated
admissible topology T. Let (X, 0) be a C-structured space. A spectrum for (X, Q) is a 7~
local, C-structured oo-topos Spec(X, O) together with a morphism f : Spec(X, 0) — (X, 0)
which possesses the following universal property: for any J-local (X', O'), composition with
f induces an equivalence of co-categories

Hom((X', ©'), Spec(X, 9)) — Hom{(X', 0'), (X, 0)).

Here the subscript on the left hand side indicates that we consider only T-local morphisms.

The remainder of this section is devoted to proving the existence of spectra for C-
structured co-topoi (X, O). In order to simplify the discussion, we will restrict our attention
to the case in which X is an oo-topos of presheaves on some small co-category. This covers
the only case that we will really use later: namely, X = §. We note that if f : X — Y
is a geometric morphism, O is a C-valued sheaf on Y, and (¥, 0} is a spectrum for (Y, 0),
then the lax fiber product (Y xy X, (f')* ©') is a spectrum for (X, f* O), provided that the
fiber product exists. Here f’ denotes the projection onto the first factor. The construction
of these lax fiber products is treated in [22]. We only wish to note that, granting their
existence, the problem of constructing spectra can be reduced to the universal case where
X is the classifying topos for C-valued sheaves, which is again an co-topos of presheaves. In
other words, the special case that we are treating here is really quite general.

So let us now suppose that X = 8" is the oo-topos of presheaves on D, where D is
a small oo-category. A C-valued sheaf on X may be identified with a C-valued presheaf
O : D® — C. From this data we shall give an explicit construction of (Y, Oy) = Spec(X, O).
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Let D be the co-category of pairs (D, A) where D € D and ¢ : @(D) — A is an
admissible morphism (we will omit ¢ from the notation but it is part of the data). A
morphism (D, A) — (D', A’) consists of a morphism D — D' and an extension of the
composite map O(D') — O(D) — A to a map A’ — A.

We equip D with a Grothendieck topology by declaring a family of morphisms to be
covering if and only if it contains a family equivalent to {(D, A,) — (D, A)}, where the
family of morphisms (A — A,) is an admissible covering of A for the topology T. We then
define Y to be the oo-category of 8-valued sheaves on D.

Remark 4.1.17. For a discussion of S-valued sheaves on oo-categorical sites, we refer the
reader to the appendix. We warn the reader that although our notion of an oco-category with
a Grothendieck topology is equivalent to that of [39], our notion of a sheaf is different since
we impose weaker descent conditions.

Let Oy denote the sheafification of the C-valued presheaf 65 given by

—

Oy(D, 4) = A.
Proposition 4.1.18. The C-structured space (4, Qy) is a spectrum for (X, Q).

Proof. We note that there is a functor D — 5, given by
D w— (D,0(D)).

This functor gives a continuous map of sites, where D is equipped with the discrete topology.
Consequently, it induces a geometric morphism f : Y — X. Then f, Oy is given by

D — 0y(D, 0(D)).

In particular, there is a morphism O(D) — (f. Oy)(D) which is natural in D. The adjoint
morphism ¢ : f* O — Oy, together with f, give a morphism (Y, Oy) — (X, O) of C-structured
oo-topol.

We next show that (Y, Oy) is T-local. Suppose that U € Y, and that {9}, : Oy(U) — AL}
is a covering family. We must show that the family {Sol(¢ )} covers . Without loss of
generality, we may suppose that the family is finite. We also note that the assertion is
local on UU. Consequently, we may suppose that U is the sheafification of the presheaf on
D represented by an object (D, A), that each ¥y, is the base change of some admissible
morphism %, : Oy(U) — A,, and that {i,} is a covering family for 69(U) = A. In this
case, Sol(v),) is the sheafification of the presheaf represented by (D, A,), and these form a
covering of (D, A) by construction.

It is now clear that the pair (f, ¢) induces by composition a functor

F Homg—((Z, Oz), (H, Oy)) — HOI’H((Z, Oz), (DC, O))
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To complete the proof that (Y, Oy) is a spectrum for (X, Q), it suffices to show that F is an
equivalence whenever (Z,0z) is T-local. We give a sketch of the construction of the inverse
functor. '

Suppose we are given a geometric morphism g : Z — X and a transformation O — g, Oz.
We may identify g with a left-exact functor go : D — 2. We then define g5 on D by
the formula go(D, A) = Sol(¥’), where o' : Oz(go(D)) — A’ is the cobase extension of
¥ O(D) — A. One shows that gp is left exact, so that it induces a geometric morphism
g from Z to the oo-topos of presheaves on D. By construction it extends naturally to a
morphism of C-structured spaces

(Z,02) — (827, By).

To complete the proof, it suffices to show that g factors through (Y, Oy). This is a purely
“topological” assertion, having nothing to do with the structure sheaves. It follows from
the universal property of Y (see Appendix 9), provided that we can show that gy carries
covering families in D into covering families in Z. But this is precisely the condition that Z
be T-local. O

Remark 4.1.19. Let us say that an co-category is an n-category if Hom(X,Y) is (n — 1)-
truncated for any pair of objects X and Y. According to this definition, a l-category is
simply a category in the usual sense, and a 0-category is a partially ordered set. From the
construction, we see that if D is an n-category and if the oo-category of admissible objects
under O(D) is an n-category for any D € D, then Y is an oo-category of 8-valued sheaves
on the n-category D . Ifn= 1, this means that Y is the co-category associated to a topos;
if n = 0, this means that Y is the oc-category associated to a locale.

4.2 Topologies on Simplicial Commutative Rings

In this section, we will give various examples of admissible topologies on the oo-category
SCR, which are derived analogues of topologies of interest in classical algebraic geometry.
The only topology that we will really use later is the étale topology, but we feel that giving
the general picture is helpful for clarifying the dependence of our formalism on a particular
topology.

We will be concerned with the following examples:

1. T&: The admissible morphisms are the étale morphisms. The covering families { R —
Ry }aca are those for which there exists a finite subset Ag C A such that

R =[] Ra

aEAg

is faithfully flat over R. We will refer to this as the étale topology.
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2. Tnis: The admissible morphisins are the étale morphisms. The covering families
are those for which {R — Rga}aca be those for which there exists a finite sequence
R;,..., R, taken from the R-algebras {R,} and a finite sequence of compact open
subsets = Uy CU, C ... C U, = X of the Zariski spectrum X of mgR, such that the
(ordinary) scheme Spec(moR;) X x (U; — U;—1) contains an open subscheme which maps
isomorphically to U; — U;_;. We shall refer to this as the Nisnevich topology.

3. Tza: The admissible morphisms are the étale morphisms f : B — R’ for which
mof : Mo — meR' induces an open immersion of affine schemes. The covering families
{R — R,}aca are those for which there exists a finite subset Ap C A such that

R’=HRQ

ac€Ag
is faithfully flat over R. We will refer to this as the Zariski topology.

4. Tiv: The admissible morphisms are the equivalences. An admissible family {R —
R, : a € A} is covering exactly when A is nonempty. We shall refer to this as the
trivial topology.

It is easy to see that each of these examples satisfies the conditions of Definition 4.1.9.
Moreover, the structure theory of étale morphisms shows that each of these topologies is
compactly generated.

Remark 4.2.1. Each of the topologies defined above induces topologies on the co-category
of admissible A-algebras, for any fixed A € SCR. Theorem 3.4.13 shows that this oo-category
is actually an ordinary category, since it is equivalent to a full subcategory of the étale myA-
modules. Moreover, the induced topology on the category of admissible A-algebras agrees
with the same topology on the (equivalent) category of admissible nyA-algebras, which is
simply the classical étale, Zariski, Nisnevich (with slight modifications), or trivial topology.

Remark 4.2.2. Our definition of the Nisnevich topology is slightly nonstandard. One
usually declares that a family of étale morphisms {A — A,} is a Nisnevich covering if,
for any residue field s of A, some fiber A, ®4 & contains a factor isomorphic to k. This
definition is equivalent to ours if A is Noetherian (see Proposition 4.4.1), but the definition
given above seems to have better formal properties in the general case. For example, the
Nisnevich topology, as we have defined it, is compactly generated. In fact, our definition is
uniquely prescribed by the requirements that the Nisnevich topology be compactly generated,
and that it should agree with the usual Nisnevich topology in the Noetherian case.

It T =Tg or Tnis, and R € SCR, then the oo-category of admissible R-algebras is stable
under finite products. A family {R — R, }ae4 is covering if and only if there exists a finite
subset Ag C A such that the single morphism R — [] acA, Fa 18 covering. In these cases, the
sheaf condition is easily stated in the language of rings. Namely, a presheaf on the category
of admissible R-algebras is a sheaf if and only if it satisfies the following conditions:
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e For any finite family of objects {R,} of C, the natural map F([] Ra) — [[ F(Ra) is
an equivalence.

e For any covering morphism § — 5y, if we form the simplicial object S, of € with
Sn = So®s. . .®5Sp (n factors), then the natural map F(S) — | F(S,)| is an equivalence.

Remark 4.2.3. For the Zariski and étale topology, the notion of a covering satisfies flat
descent in the following sense: if S is a faithfully flat R algebra, then a family of morphisms
{R — R,} is covering if and only if the family {S — R, xz S} is covering. For the Nisnevich
topology this fails, even if S is étale over R.

In addition to the four topologies defined above, it is occasionally useful to consider
a much finer topology, the flat hypertopology. To introduce this, we need some notation
for describing cosimplicial objects in oc-categories. Let A denote the ordinary category of
combinatorial simplices. The objects of A are finite, nonempty linearly ordered sets, and
the morphisms are nondecreasing functions. We let A<, denote the full subcategory of A
consisting of simplices having dimension < n (in other words, linearly ordered sets having
cardinality < n + 1). If € is any oo-category, then a cosimplicial object of € is defined to
be a functor A — €. We will write cosimplicial objects of € as C*, where C™ denotes the
evaluation of the cosimplicial object on the object [0,...,n] € A.

An n-skeleton in € is defined to be a functor A, — €. Restriction induces a functor
from cosimplicial objects in € to n-skeletons in €. If € has all finite colimits, then this functor
has a right adjoint (which is constructed by a standard procedure). If X* is a cosimplicial
object of €, we let cosk™ X* denote the result of applying this adjoint to the restriction of
X°*. Thus, there is an adjunction morphism

X® — cosk™ X*

which is an equivalence when evaluated on simplices of dimension < n.

We specialize to the case where € = §CR,4 is the oco-category of A-algebras, for some
fixed A € SCR. This oco-category has all finite colimits, so that we can construct coskeleta.
A cosimplicial object B® of C is called a flat hypercovering of A if the following condition is
satisfied:

e For each n > 0, the adjunction (cosk® ! B*)* — B™ is faithfully flat.

In other words, B? is faithfully flat over A, B! is faithfully flat over B® ®, B, and so
forth.

For any oc-category €, a functor F : §€R — C is said to be a sheaf for the flat hyper-

topology if it satisfies the following conditions:

e For any finite collection of objects {A;} in 8€R, the natural map F(IT;4;) — TI; F(As)
is an equivalence.
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» The natural map F(A) — | F(B*)| is an equivalence whenever B*® is a flat hypercovering
of A.

Example 4.2.4. Let F denote the identity functor from SCR to itself. Then F is a SCR-
valued sheaf on SCR. In other words, the flat hypertopology is a sub-canonical topology on
SCR. The main point is to show that if A® is a flat hypercovering of A € SCR, then the
natural map A — |A®*| is an equivalence. For this, we use the Bousfield-Kan spectral sequence
(see, for example, [6]) to compute the homotopy groups of |A®|. This spectral sequence has
B2, = 7P(ngA%) = mpyg|A®|, where 77P(m A%) indicates the (—p)th cohomotopy group
of the cosimplicial abelian group m,A®. Since A® is a flat hypercovering of A, we deduce
that m~P(m;A®) = m,A for p = 0 and vanishes otherwise. Thus the Bousfield-Kan spectral
sequence degenerates at F and demonstrates that A ~ |A*|.

Example 4.2.5. Let € be the (very large) co-category of oo-categories (where morphisms
are given by functors, and we disregard non-invertible natural transformations of functors).
Let F : SCR — C assign to each A € SCR the oo-category M4 of A-modules. Then Fis a
sheaf for the flat hypertopology. It is easy to see that F carries finite products into finite
products; the main point is to show that if A — A* is a flat hypercovering, then M, is the
geometric realization of the cosimplicial co-category M .. This geometric realization may
be interpreted as an oc-category of costmplicial modules over the cosimplicial object A® of
SCR. Let F: M4 — Mye denote the natural functor. Then F has a right adjoint G: one
can either observe that F' preserves limits and that both M4 and M. are presentable, or
argue directly by setting G(M*®) = |M*|. Now it suffices to show that the adjunction maps
M — GFM and FGN®* — N* are equivalences, for any M € M4 and N* € M .. Both
of these results follow from easy computations with the appropriate Bousfield-Kan spectral
sequences (which degenerate at E»).

Remark 4.2.6. The flat hypertopology also makes sense in the context of connective Ay-
ring spectra. Examples 4.2.4 and 4.2.5 generalize easily to this setting.

Remark 4.2.7. Descent for modules as formulated in Example 4.2.5 is only a prototype for
a host of similar results. All manners of variations (such as descent for algebras) may be
established in the same manner.

Remark 4.2.8. We could also define étale, Nisnevich, and Zariski hypertopologies, as well as
a “flat topology” which imposed descent only for 1-coskeletal flat hypercoverings. However,
we shall not need these intermediate notions.

Remark 4.2.9. The flat hypertopology is very much unlike the other topologies considered
in this section, for the following reasons:

e There is no strong relationship between the flat hypertopology on the co-category of
flat A-algebras and the flat hypertopology on the category of flat myA-algebras.
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e In the context of the flat hypertopology, one considers all A-algebras, rather than
simply some class of admissible A-algebras. The oo-category S€R4, is not small, so
one does not expect an oo-topos of sheaves for the flat hypertopology or any kind of
“sheafification” functor.

e The functor represented by a derived scheme (see §4.5 for the definition) need not be a
sheaf for the flat hypertopology. (For example, a general result of this type would imply
the equivalence of flat and étale cohomology with arbitrary coefficients.) However, most
of the derived schemes and derived stacks which arise naturally do satisfy this stronger
descent condition. A very general descent result of this type will be proven in [24].

4.3 Spectra of Simplicial Commutative Rings

An ordinary scheme is defined to be a topological space with a sheaf of rings, which is
locally isomorphic to some affine model Spec A with its Zariski topology, where A is some
commutative ring. Our definition will have the same form, but will differ in certain respects:

e The Zariski topology, while sufficient for many applications, provides an inadequate
foundation for describing algebraic spaces and Deligne-Mumford stacks. For this rea-
son, we will employ the étale topology in place of the Zariski topology.

e The Zariski topos of a commutative ring is localic and has enough points, and may
therefore be adequately described in terms of a topological space. However, the étale
and Nisnevich topoi of a commutative ring are not localic, and in order to use these
topologies in a serious way one must replace the notion of a “ringed space” with that of
a “ringed topos”. Although it is not strictly necessary to go any further than this (see
Theorem 4.5.10), it will be convenient to formulate our definition in terms of “ringed
oo-topoi”.

e We will allow our local models to have the form Spec A, where A € SCR, rather
than restricting our attention to discrete commutative rings. We remark that this
generalization is completely independent of the topological considerations described
above, since the étale topology of A € 8€R is identical with that of mpA.

We shall abuse terminology by saying that a SCR-valued sheaf O on X is a sheaf of
rings on X. A ringed oo-topos is a pair consisting of an oco-topos X and a 8CR-valued sheaf
O on X. In the terminology of §4.1, we may say that a ringed oco-topos is a is a SCR-
structured oo-topos. Morphisms between ringed oo-topoi are defined to be morphisms of
SCR-structured oo-topoi. We remark that the collection of morphisms between two ringed
oo-topoi is naturally organized into an oo-category, so that the ringed oo-topoi themselves
constitute an (0o, 2)-category. If (f, ¢) is a morphism of ringed co-topoi, we will typically
abuse notation and simply refer to f, with ¢ being understood.

We now discuss the relationship between SCR-valued sheaves and sheaves of ordinary
commutative rings. More generally, we will consider n-truncated rings for any n > 0.
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Definition 4.3.1. A SCR-valued sheaf O on an co-topos X is n-truncated if O(U) is n-
truncated for any U € X. In this case we shall also say that (X, Q) is n-truncated.

Remark 4.3.2. In order to check that a SCR-valued sheaf O is n-truncated, it suffices to
verify that O(U) is n-truncated as U ranges over a family of objects which generates the
oo-topos X under colimits. For example, if X is the co-topos of sheaves on an ordinary topos
X, then it suffices to check that O(U) is n-truncated for U € X.

Remark 4.3.3. Let F' = 7, : 8€R — 7<, SC€R be the localization, which is left adjoint
to the inclusion G : 7<, 8CR C SCR. Since G commutes with filtered colimits, Proposition
4.1.7 implies that it is safe to ignore the distinction between SCR-valued sheaves which take
n-truncated values, and 7<, SCR-valued sheaves. In particular, when n = 0, we see that the
notion of a SCR-valued sheaf on an oo-topos X is an honest generalization of the notion of
a sheaf of commutative rings on X (which is the same as a commutative ring object in the
ordinary topos T<g X).

If O is a sheaf of rings on an co-topos X, then we let 7<,, O denote the S€R-valued sheaf
on X which is obtained by sheafifying the presheaf

U — 7<, O(U).

Proposition 4.1.7 implies that (X,7<, Ox) is n-truncated. There is a natural map f :
(X,7<n Q) — (X,0). By construction, f is universal with respect to these properties, in
the sense that any morphism from an n-truncated ringed co-topos (X', 0') to (X, ©) factors
uniguely through (X, 7<, O).

Proposition 4.3.4. Let f : X — Y be a geometric morphism of co-topoi, and let O be a SCR-
valued sheaf on Y. Then there is a natural equivalence T<, f* O ~ f*1<, O. In particular, if
O is n-truncated, then so is f* ©.

Proof. One first shows that the functor 7<, is compatible with the “underlying space” functor
from SCR-valued sheaves to 8-valued sheaves. It then follows that f* preserves the property
of being n-truncated. The universal property of 7<, then produces a natural transformation

f*TSn - TSnf*-

To see that this natural transformation is an equivalence, it suffices to check on the underlying
spaces. Now apply [22], Proposition 2.5.10. 0

Let T € {Tet, Tnis, Tzar, Terivy e a topology on SCR. If X = (X,0x) and Y = (Y, Oy)
are two ringed oo-topoi which are local for the topology 7, then we shall write Homq(X,Y)
for the co-category of T-local morphisms of ringed topoi.

Lemma 4.3.5. Let X be an co-topos, O a SCR-valued presheaf on X, U an object of X, and
A an algebra which is locally of finite presentation over O(U). Let F be the $-valued presheaf
on X, defined by

F(V) = Homg, (4, O(V)).
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Let O denote the sheafification of O, let A = ﬁ@a(u) O(U), lety: O(U) — A be the natural

morphism, and let F = 8ol(v). Then the natural morphism F — JF identifies F with the
sheafification of F

Proof. Replacing X by X,;, we may reduce to the case where U is the final object of X.

Let R = 6(U ). Then we may regard O as a sheaf of R-algebras. We note that 8CRp, is
compactly generated. Since the forgetful functor S€Rp, — SCR is right adjoint to e @z R

and commutes with filtered colimits, we see that the sheafification of © as a SCR-valued
presheaf agrees with its sheafification as a SCRg/-valued presheaf. Since A is a compact
object of 8€CRp,, the assertion follows immediately from the description of SCRp/-valued
sheaves given in the proof of Proposition 4.1.7. O

Proposition 4.3.6. Let T € {T &, Tnis, Tzars Tiriv} be a topology and n € Zsg.
1. A ringed oo-topos (X, Ox) is local for T if and only if (X, 7<n Ox) is local for 7.

2. A morphism f : (X,0x) — (Y,0y) of ringed co-topoi is T-local if and only if the
induced morphism (X, 7<, Ox) — (Y, 7<n Oy) is T-local.

Proof. We now prove (1). First, suppose that (X, 7<, Ox) is T-local. Let {t)o : O(U) — Au}
be a family of morphisms and let {¢, : (7<, O)(U) — Aq ®ow) (T<n O)(U)} be the induced
family. If ¥, constitutes an admissible covering of O(U), then v, constitutes an admissible
covering of (1<, O)(U), so that the objects {Sol(3},) — U} cover the object U € X. To prove
that (X, Ox) is T-local, it will suffice to prove that 8ol(#,) =~ Sol(1/,). By definition, Sol(%,)
represents the sheaf

V — Homo) (4, O(V)).

Since A is étale over O(U), the right hand side may be rewritten as Hom,_ ow)(7<nA, 7<n O(V)),
and T<p A = T<;, O(U) ®oy A- Lemma 4.3.5 shows that Sol(¢,) is the sheafification of this
presheaf. Since Sol(¢,) is already a sheaf, we get Sol(zy) =~ Sol(¢),).

For the reverse implication, let us suppose that (X, Ox) is T-local. We must prove that
(X, 7<n Ox) is T-local. Suppose that U € X, and let {9, : (7<, Ox)(U). — AL} be an
admissible covering family. We must show that the family {Sol(¢)}) — U} is covering.
Without loss of generality, we may assume that there are only finitely many elements of the
covering. Suppose that we can find an admissible covering {¥f : 7<,(OxU) — AL} which
induces 1 after base change. Since the categories of étale algebras over 7<,(Ox(U)) and over
Ox(U) are equivalent, 1% is the base change of an admissible morphism %, : Ox(U) — A,.
Then the family {1,) is an admissible covering of Ox(U), and so the hypothesis implies
that {8ol(#)} forms a covering of U/. But the argument for the first part shows that
Sol(1a) ~ Sol(,,), and we are done.

In general, there is no reason to expect that we can find such a family {¥/} globally.
However, Lemma 4.1.14 (applied to the geometric morphism X — 8% for a large regular
cardinal k) shows that {¢/} can always be found locally on U. Since the conclusion is also
local on U, the proof of (1) is complete.

The proof of (2) is similar and is left to the reader. O
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Remark 4.3.7. Let (X, 0) be a ringed oo-topos. Then (X, O) is local for the topology T
if and only if (X, 79 O) is local for the topology T, if and only if the ordinary ringed topos
(7<0 X, m0 Q) is local for the topology T, in the obvious sense. If the topos 7<o X has enough
points, then this is equivalent to a condition on stalks: a sheaf of discrete rings O is local for
the topology Tzar (Te) if and only if for every point z, the stalk mo(Q,) is a local (strictly
Henselian) ring. The situation for the Nisnevich topology is slightly more complicated: if
each stalk my(O,) is Henselian, then O is Tyjs-local; the converse holds provided that each
stalk O, is Noetherian.

We can now apply the results of the last section to discuss spectra of ringed co-topoi.
If (X, 0) is a ringed co-topos, then we let Spec”(X, ©) denote its spectrum with respect to
the compactly generated, admissible topology T. If X is a point and O = A € SCR, then
we write Spec” A instead of Spec?(X,©). If T is the étale topology, we will simply write
Spec(X, O) or Spec A.

Remark 4.3.8. The explicit construction of spectra given in the last section shows that if
A is an ordinary commutative ring, then the underlying co-topos of Spec” A is the oc-topos
associated to the ordinary category of set-valued sheaves on A with respect to the topology
7.

More generally, suppose that T and T’ are admissible topologies such that 7 is finer than
T’ in the sense that T has more admissible morphisms and more covering families; we shall
denote this by writing 7 < 7. In this case, we can define a relative spectrum Specg;(x, 0)
which is defined for J'-local ringed oo-topoi (X, 0). By definition, Spec].(X, O) is universal
among T-local ringed co-topoi which admit a T'-local morphism to (X,®@). To construct
Specg (X, O), one forms a lax fiber product of X with Yy over Y, where Y5 and Y4 denote
the classifying oc-topoi for T-local and T’-local SCR-valued sheaves. We note that Specg is
the identity functor, and that Spec. Specg:, ~ Specg. for T< T < T

We now show that the construction of spectra is insensitive to the higher homotopy
groups of the structure sheaf.

4

Proposition 4.3.9. Suppose that T,T € {Tiiv, Tzar, Tnis; T} are topologies with T <
T'. Let (Y,0y) be a ringed co-topos which is T'-local. If (X, 0x) = SpecT.(Y,Oy), then
(X, 7<n Ox) = Specgﬂ (Y, 7<n Oy).

Proof. 1t suffices to treat the universal case in which Y is the classifying co-topos for T'-local
8CR-valued sheaves. In this case, (Y,0y) = Spec?r:riv(Z, Oz), where Z is the classifying oo-
topos for arbitrary SCR-valued sheaves. The result follows if we can show that (Y, 7<n, Oy) =
Spec%ﬁv(z, T<n Oz) and (X, 7<, Ox) =~ Spec%m(Z, T<n Oz). In other words, we may assume
that T is the trivial topology, so that Y is an co-category of presheaves. In this case, the result
follows immediately from the construction of spectra given in the last section (after noting

that the category of T-admissible A-algebras is equivalent to the category of T-admissible
T<nA-algebras). O
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Remark 4.3.10. We remark that most of the oo-topoi which we will be considering (for
example, the co-topos of étale sheaves on a commutative ring) do not necessarily have enough
points. This could be remedied by replacing the topologies we are using by the corresponding
“hypertopologies”. Although this leads to a few simplifications, we feel that our approach is
more natural (and equivalent in all practical respects).

Remark 4.3.11. If A € SCR, then we let A,y denote the ordinary commutative ring
obtained from myA by dividing out the nilradical. All of the assertions made in this section
regarding the functors A — 7<,A may be modified to include also the case A — A4, since
the category of étale A,.g-algebras is equivalent to the category of étale myA-algebras.

Remark 4.3.12. If A € SCR, then A is naturally equivalent to the global sections of the
structure sheaf on Spec” A. This does not follow formally from the construction of spectra.
If we understand the underlying oo-topos of Spec” A to be the oo-category of sheaves on the
category of étale A-algebras, then the structure sheaf is given by sheafifying the presheaf
given by the forgetful functor

S(i’iRit/ — SCR.

We observe that this presheaf is already a sheaf: in other words, each of the topologies that
we are considering is sub-canonical. Even more, the flat hypertopology is subcanonical: see
Example 4.2.4.

4.4 Finiteness Properties

The goal of this section is to formulate some finiteness properties enjoyed by the topologies
TNiss Tzar, and Tg. The results of this section deal purely with “topological” properties of
algebro-geometric objects, so there is no need to consider simplicial commutative rings: all
rings in this section are assumed to be discrete. Also, throughout this section we shall write
Spec A for the Zariski spectrum of a commutative ring A, regarded as a topological space.

Most of the results of this section concern the Nisnevich topology, and will not be needed
later in this paper. This section may be safely skipped, with the exceptions of the second
parts of Theorems 4.4.3 and 4.4 4.

We first justify the assertion made in Remark 4.2.2, regarding the relationship between
our definition of the Nisnevich topology and the usual definition.

Proposition 4.4.1. Let A be a Noetherian commutative ring. Then a family {A — Aa}
of étale A-algebras is covering with respect to the Nisnevich topology if and only if, for any
residue field & of A, there exists an mdex o such that A, ® 4 k contains a factor isomorphic
to K.

Proof. Tt is clear that any Nisnevich covering has the indicated property (this does not require
the assumption that A is Noetherian). For the converse, let us suppose that we are given a
family of étale maps {A — A,} which satisfy the hypotheses of the proposition. We define
a sequence of subsets U; of the Zariski spectrum X of A as follows. Let Uy = §. Assuming
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that U; # X has been defined, let  be a generic point of the closed subset X — U, let « be
the residue field of A at n, and let A, be such that A, x 4 k contains a factor isomorphic to
. Then Spec A; xx (X — U;) is étale over X — U; and contains an open subset which maps
to X — U; via an open immersion. We let Us4; denote the union of U with the image of this
open immersion. Since A is Noetherian, the sequence of open sets Uy C U, ... cannot be
continued indefinitely. Thus we eventually have U,, = X, and the construction shows that
{A — A,} is a Nisnevich covering of A. O

Let A be a commutative ring and F a 8-valued presheaf on the category of étale A-
algebras which is a sheaf for the Nisnevich topology. In particular, for any étale A-algebra
A’, F restricts to a Zariski sheaf on Spec A’. Consequently, F extends uniquely to a Zariski
sheaf on the category of quasi-compact, quasi-separated étale A-schemes. We begin by
stating an appropriate version of the Morel-Voevodsky descent theorem.

Proposition 4.4.2. Let R be a commutative ring, and let F be a 8-valued presheaf on the
category C of schemes which are gquasi-compact, quasi-separated, and étale over R. Then F
18 a sheaf for the Nisnevich topology if and only if the following condition is satisfied:

e For any X € C, any quasi-compact open U C X, and any 7 : X' — X in C, if 7 is an
isomorphism over X — U, then F(X) = F(U) xgwn F(X'), where U' = X' xx U.

This result is usually stated for a slightly different topology than the one which we
consider: what one might call the “Nisnevich hypertopology”, which imposes descent con-
ditions for arbitrary hypercoverings. In this setting, one must make the assumption that R
is Noetherian and of finite Krull dimension. As we shall see in a moment, this implies that
the Nisnevich topology has finite homotopy dimension so that any Nisnevich sheaf actually
satisfies this stronger descent condition. On the other hand, Proposition 4.4.2 is valid for ar-
bitrary rings R if one requires only Cech descent and employs our definition of the Nisnevich
topology.

We next apply Proposition 4.4.2 to show that sheafification with respect to the Nisnevich
topology commutes with filtered colimits:

Theorem 4.4.3. 1. Let R be a commutative ring, let X denote the co-topos of $-valued
sheaves on the Nisnevich (Zariski) topology of R. Let U be a quasi-compact, quasi-
separated scheme which is étale over R. Then evaluation on U gives a functor

X—8

which commutes with filtered colimits. (In other words, U is a compact object of X.)

2. Let R be a commutative ring, let X denote the co-topos of S-valued sheaves on the étale
topology of R. Let U be a quasi-compact, quasi-separated scheme which 1s étale over
R. Then, for each integer k > 0, evaluation on U gives a functor

T<p X — 8
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which commutes with filtered colimits. (In other words, U is a compact object of T< X.)

Proof. We first give the proof of (1) for the Nisnevich topology (the proof for the Zariski
topology is similar but easier and left to the reader). Let {F,} be a filtered diagram of
objects of X. Let F be defined on quasi-compact, quasi-separated schemes which are étale
over R by the formula

| F(U) = colim, F,(U).

Using Proposition 4.4.2, it follows that JF is a sheaf for the Nisnevich topology. Clearly J is
the filtered colimit of the diagram {F,} in X.

The proof of (2) is similar, but we must work a little bit harder to show that JF is a sheaf.
It will suffice to show that F carries coproducts into products and that if Uy — V is an étale
surjection, then the natural map F(V) — |F(U,)| is an equivalence, where U/, denotes the
(n+1)-fold fiber power of Uy over V. The first claim follows easily from the assumption that
each JF, carries coproducts into products. For the second, we must be more careful since
the formation of the geometric realization of a cosimplicial object is not a finite limit and
does not commute with filtered colimits in general. However, if each ¥, is k-truncated, then
F is also k-truncated, and consequently | F(U.)| and | Fo(U,)| are equivalent to finite limits
which mention only the k-skeleton of the simplicial scheme' X,. The conclusion then follows
from the fact that finite limits distribute over filtered colimits. O

Proposition 4.4.2 also implies that in some sense, the Nisnevich spectrum of a ring R
may be constructed as the limit of the Nisnevich topologies of finitely generated subalgebras
of R. More specifically, we have the following:

Theorem 4.4.4. 1. Let A be a commutative ring, and let F be a S-valued sheaf on the
Nisnevich (Zariski) topology of A. Extend the definition of F to all A-algebras B by
setting

F(B) = (x* F)(B)
where 7 is the geometric morphism from the Nisnevich (Zariski) spectrum of B to the

Nisnevich (Zariski) spectrum of A. Then the functor F commutes with filtered colimits.

2. Let A be a commutative ring, and let F be a truncated 8-valued sheaf on the étale
topology of A. Extend the definition of F to all A-algebras B by setting

F(B) = (n* F)(B)

where 7 is the geometric morphism from the étale spectrum of B to the étale spectrum
of A. Then the functor F commutes with filtered colimits.

Proof. We first prove (1) for the Zariski topology. Let ¥ be the S-valued functor on A-
algebras which agrees with F' on finitely presented A-algebras and commutes with filtered
colimits. If R is an arbitrary A-algebra, then JF' restricts to a S-valued presheaf on the
category € of admissible R-algebras. It is easy to see that F | € is the sheafification of F' | C
with respect to the Zariski topology. To complete the proof, it will suffice to show that ¥ is
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already a sheaf with respect to the Zariski topology. In other words, we must show that for
any admissible R-algebra R’ and any Zariski covering {R' — R.}, F(R') may be computed
as the homotopy limit of an appropriate diagram. Without loss of generality, we may refine
the covering and thereby assume that it is indexed by a finite set. Next, since each R,
is finitely presented as an R’-algebra, we may assume that they are all defined over some
finitely presented A-algebra. Enlarging A if necessary, we may assume that R = R’ x4 A,
where {A — A,} is a Zariski covering. Now the desired result follows from the fact that
the diagram defining the appropriate limit is finite, and finite limits commute with filtered
colimits.

Next we prove (1) for the Nisnevich topology. Since 3 is a sheaf for the Zariski topology,
it admits a unique extension (as a Zariski sheaf) to the category of all quasi-compact, quasi-
separated A-schemes. We now run the above argument again, this time using Proposition
4.4.2, to deduce that F is a sheaf for the Nisnevich topology and complete the proof.

The proof of (2) is similar, except that we verify that F' is an étale sheaf more directly.
Since it is clear that F carries products into products, it suffices to show that if R — R,
is a faithfully flat, étale map, and R; denotes the (¢ + 1)-fold tensor power of Ry over R,
then F(R) — | F(R.)| is an equivalence. Since Ry is finitely presented over R, it is the base
change of an R,-algebra (R,)o for some map R, — R, where R, is finitely presented over
A. Enlarging « if necessary, we may suppose that (Rg)o is faithfully flat and étale over R,.
We may now attempt to deduce that F'(R) ~ | F(R.)| by knowing that this holds over R
cofinally, and passing to filtered colimits. The situation is as in the proof of Theorem 4.4.3.
In general, filtered colimits do not commute with the geometric realization of cosimplicial
spaces. However, they do commute in the special case where all of the spaces are k-truncated,
since in this case the geometric realization is equivalent to a finite limit. O

Theorem 4.4.5. Let R be a Noetherian commutative Ting of Krull dimension < n. Let X
denote the underlying co-topos of Spec’™s R. Then X has homotopy dimension < n.

(For the definition of homotopy dimension, we refer the reader to §4 of [22].)

Proof. We give an argument which is modelled on the version of the Grothendieck’s vanishing
theorem proven in [22]. Some modifications are necessary because the Nisnevich topos is not
localic, but on the whole the argument becomes a bit simpler because one does not need to
worry about noncompact open sets.

If X is a scheme admitting a quasi-finite map to Spec R, we define the ambient dimension
of X to the Krull dimension of the closure of the image of X in Spec A. We note that if
U C X is a dense open subset and U has ambient dimension < k, then X — U has ambient
dimension < k.

Let X be a scheme which is étale over Spec R, and let F be a S-valued sheaf on the
Nisnevich topology of X. We shall say that F is strongly k-connected if the following condition
is satisfied: for any scheme X' which is étale over X, any m > —1, and any map ¢ : S™ —
F(X'), there exists an open subset U C X’ such that X’ — U has ambient dimension < m —k,
a Nisnevich covering X" — U, and a nullhomotopy of ¢|X". '
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If R has Krull dimension < n, then any (k+n)-connected S-valued sheaf JF is strongly k-
connected. To prove the theorem, it will suffice to prove that if F is strongly (—1)-connected
sheaf on X, then F(X) is nonempty. In order for the proof to go through, we will need to
prove the following slightly stronger statement:

e Let X be any scheme which is étale and of finite type over Spec R, let F be any strongly
(—k)-connected S-valued sheaf on the Nisnevich topology of X, let U € X be any open
set, and let n € F(U). Then there exists an open set V containing U and an extension
of n to V, such that X — V has ambient dimension < k — 1.

The proof goes by descending induction on k. For the base case we may take k = n + 2
and V = U (since any subset of X has ambient dimension < n).

Now suppose that the result has been established for strongly (—k —1)-connected sheaves
(on arbitrary étale Spec R-schemes), and let X, U, F, and 7 be as above where F is strongly
(—k)-connected. Consider all open sets U C X such that U contains U and 7 extends over
U. Since X is a Noetherian topological space, we may choose U to be maximal with respect

to these properties. Replacing U by U7, we may reduce to the case where U is itself maximal,

Since ¥ is strongly (—k)-connected, there exists an open set W'C X and a Nisnevich
covering X’ — W such that F admits a global { section over X', and X — W has ambient
dimension < k — 1. Without loss of generality, we may assume that W contains U, and we
may replace X by W and thereby assume that F is (—1)-connected.

Let ¥ denote the Nisnevich $-valued sheaf on U’ = X’ x x U consisting of paths from {|V’
to n|V’. Then F is strongly (—k — 1)-connected, so by the inductive hypothesis there exists
a closed subset X’ C U’ having ambient dimension < k such that {|(U'— K*) ~ n|(U’' — K').
Then K’ — K’ has ambient dimension < k— 1. Removing the closure of the image of K’ — K’
from X, we may suppose that K’ is closed in X’.

We now claim that U = X. If not, let = denote a generic point of some component of
X — U. There exists a point 2’ € X' — U’ such that the projectionp: X' —-U" - X -Uisa
local homeomorphism at 2. Let V be a neighborhood of 2’ in X' — U’ such that p|V is an
open immersion. Then the pair {U,U’ U V'} constitutes a Nisnevich covering of U U p(V).
By construction, the sections n and ¢|{U’ U V) may be glued along the overlap U’ to give a
section of F over U Up(V) which extends . By the maximality of U, we get UUp(V) = U,
so that z € U, which is a contradiction. ' O

Remark 4.4.6. The additional hypotheses of truncatedness given in Propositions 4.4.3 and
4.4.4 are necessary when working with the étale topology. For example, if R is the field
of real numbers, then the étale spectrum of R is the classifying co-topos for the Galois
group Gal(C/R) ~ Z/2Z. The classifying space of Z/2Z is not homotopy equivalent to a
finite complex, so that the global section functor does not commute with filtered colimits.
However, the classifying space of any finite group does admit a CW decomposition with only
finitely many cells in each dimension, so that the functor of global sections commutes with
filtered colimits when restricted to k-truncated sheaves of spaces for any k > 0.
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One of the advantages of the Nisnevich topology is that it is coarse enough to have the
good finiteness properties established in this section (unlike the étale topology), yet fine
enough to allow the proof of Artin’s representability theorem to go through (unlike the
Zariski topology).

4.5 Derived Schemes

In this section we return to our usual convention regarding the definition of Spec A: unless
otherwise specified, the spectrum is taken with respect to the étale topology.
We are now finally in a position to give our main definition.

Definition 4.5.1. A derived schemeis a ringed co-topos (X, Ox) with the following property:
there exists a collection of objects U, € X such that []J, Uy — 1x is surjective, and each
(X, Ox |Us) is equivalent to Spec A, for some A, € SCR.

Remark 4.5.2. Replacing the étale topology by some other admissible topology 7 on SCR,
we would arrive at the notion of a T-derived scheme. For example, when 7T is the trivial
topology, a T-derived scheme is simply a ringed oo-topos (X, Q) such that X is étale over the
oo-topos 8.

Let T < T, and suppose that (X, @) is a T-derived scheme. Then Specl(X,0) is a
T-derived scheme. This follows immediately from the locality and transitivity properties of
spectrification.

If X and Y are derived schemes, then we define the co-category of derived scheme mor-
phisms from X to Y to be co-category Homs,, (X, Y) of Te-local morphisms of ringed co-topoi.
We will show in §4.6 that this oo-category is a small co-groupoid, which we may identify
with its classifying space. In other words, the derived schemes constitute an ordinary oc-
category. At this point, we know only that they form an (oo, 2)-category (potentially with
“large” morphism oo-categories).

Remark 4.5.3. If (X,0) is a ringed oo-topos whose underlying co-topos X is a disjoint
union of components X,, then (X, Q) is a derived scheme if and only if each (X, O] X,) is
a derived scheme.

Remark 4.5.4. The property of being a derived scheme is local. That is, if (X,0) is a
derived scheme and f : Y — X is an étale geometric morphism, then (Y, f* O) is a derived
scheme. Conversely, if f is an étale surjection and (Y, f* O) is a derived scheme, then (X, O)
is a derived scheme.

Remark 4.5.5. Let f: X — Y is a morphism of derived schemes. Locally on X and Y,
we may write X = Spec A and Y = Spec B; then specifying f is equivalent to specifying a
morphism B — A in S€R. If P is any property of 8€R-morphisms which is local on both
the source and the target with respect to the étale topology, then it makes sense to say
that f : X — Y has the property P if all of the 8€R-morphisms B — A which are locally
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associated to f have the property P. In particular, we may speak of morphisms of derived
schemes being smooth, flat, locally of finite presentation, almost of finite presentation, étale
and so forth. We note that f : X — Y is étale in the sense just described if and only if it is
étale as a map of S€R-structured oo-topoi.

Example 4.5.6. A ringed co-topos (X, Ox) is a Tyiy-derived scheme if and only if X ~ §/5
for some F € 8.

Our main goal in this section is to compare our notion of a derived scheme with the more
classical notion of a scheme. Roughly speaking, our notion is more general in two essentially
different ways: we consider ringed oo-topoi (X, Ox) in which the Ox is not discrete, and in
which X is not necessarily associated to a topological space (or even a topos).

Proposition 4.5.7. If (X, Q) is a derived scheme, then (X, 7<x O) is also a derived scheme.
Proof. This follows immediately from the last assertion of Proposition 4.3.9. O

We next turn our attention to the underlying oco-topos of a derived scheme. We recall
from [22] that if X is an oo-topos, then the full subcategory 7<o X consisting of discrete
objects is an ordinary (Grothendieck) topos. In the reverse direction, for any topos X, one
may construct an oo-topos AX. Moreover, these constructions are adjoint to one another so
that there is a natural geometric morphism X — A(7<p X) for any co-topos X. The co-topoi
X and A(7<p X) have the same discrete objects, but not necessarily the same n-truncated
objects for n > 0. However, we can say the following:

Lemma 4.5.8. Let 7 : X — Y be a geometric morphism of oo-topoi and n > 0. Suppose that
7 induces an equivalence T<, Y — T<n X, and that <, Y generates Y under colimits. Then
* is fully faithful on T<n41 Y.

Proof. Let A,B € Y. We will show that ¢ : Homy(A, B) — Homx(n* A, 7*B) is an equiva-
lence whenever B is (n+ 1)-truncated. Since Y is generated by n-truncated objects, we may
assume that A is n-truncated. Given two morphisms a, §: A — B, the space of paths from
a to B is n-truncated and compatible with the functor #*. The assumption then implies
that the space of paths from a to 3 is equivalent to the space of paths from 7*a to 7*5. In
other words, ¢ is an inclusion; to show that ¢ is an equivalence we need only show that it
is surjective on mo: that is, any map 7*A — 7*B is induced by a morphism A — B, up to
homotopy. Let f : 7*A — 7*B be such a morphism.

Choose & surjection By — B where By is n-truncated. Since B is (n + 1)-truncated,
the induced morphism 7*By — 7*B is n-truncated, so that Ag = 7*A Xgp 7" By_is n-
truncated. Let B, denote the (n + 1)-fold product of By with itself over B and Ay the
n-fold product of Ay with itself over 7*A. Then B, is a simplicial resolution of B, and
A, is the induced simplicial resolution of m*A. Consequently, there is a map of sunpllmal
resolutions A, — 7*B,. Since all of the objects involved in these resolutions are n-truncated,
the hypothesis gives a simplicial resolution A, of A and a map of resolutions f, : Ae — B
which pulls back to the map A. — 7*B,. Let f be the induced map between the simplicial
resolutions; then it is clear that 7*f =~ f ' O
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Lemma 4.5.9. Let 7 : X — Y be a geometric morphism between oo-topoi. Suppose that ©*
induces an equivalence T<, Y — T<n X and that Y is generated by n-truncated objects. Let E
be any object of X, and let #' : Xyg — Y/x, g denote the induced geometric morphism. Then
(n")* is fully faithful on 7<p Y r.5-

Proof. Since the oco-category of n-truncated objects over £ is equivalent to the co-category
of n-truncated objects over 7<,+1F, we may suppose that E is (n + 1)-truncated. In this
case, any m-truncated object over F is itself (n + 1)-truncated. Lemma 4.5.8 implies that
7* exhibits 7<, 41 X as a co-localization of 7<,41 Y. In particular, the adjunction morphism
m*mE — E is an inclusion, and 7’ induces an identification of 7<, Y/, g with the full
subcategory of 7<n, X/g consisting of those n-truncated morphisms A — E which factor
through m*m.E. O

We will apply these lemmas in the case n = 0 to prove the following:

Theorem 4.5.10. Let (X,0) be a derived scheme. Then the adjunction morphism = : X —
A(1<o X) is étale.

Proof. Since the assertion is purely topological, we may assume without loss of generality
that the structure sheaf O is discrete. Let Y denote the co-topos A(7<q X). The assertion
that 7 is étale is local on X (where we regard Y as fized), so it suffices to show that the
induced morphism X,z — Y is étale, where the object E € X has been chosen so that
(X/g,0|E) =~ SpecA for A = O(F). Let E' = m,(7<1E); then 7 induces a morphism
7' X/g — Y,p and it will suffice to show that 7’ is an equivalence.

Since E’ is 1-truncated, we may regard it as a sheaf of (ordinary) groupoids on the
underlying topos T<pY = 7<o X. Then Y,p is equivalent to the co-topos of sheaves on the
topos of discrete objects of Y g (which are the representations of the groupoid E' in the
topos T<o Y). By hypothesis, X,z is also the co-topos associated to its underlying topos of
discrete objects (see Remark 4.1.19). Thus, to prove that 7’ is an equivalence, it will suffice
to show that (7')* induces an equivalence between 1< Y, and 7<o X /p.

Since <0 X/p =~ T<o X/re g, Lemma 4.5.9 implies that (7')* is fully faithful when re-
stricted to discrete objects. To complete the proof, it will suffice to show that (x')* is
essentially surjective. Since (7')* commutes with all colimits, it will suffice to show that
X,k is generated by objects lying in the essential image of (7)*|7<oY,r. We note from the
construction of spectra that X,g = Spec A is generated by objects of the form Spec A’, where
A" is an étale A-algebra.

Now the really essential point is to notice that O is a discrete object of X, so that O
is the pullback of a sheaf of rings on Y which, to avoid confusion, we shall denote by Oy.
In particular, O |E = (7')*Oy|E’. Now we may apply Lemma 4.5.9 again, to the sheaf
Oy |E’ and the final object, to deduce that the ring A = O(E) is canonically isomorphic
with the ring Oy(E’). In particular, we may view 4’ as an admissible Oy(E’)-algebra. Let
¥ Oy(E') — A" and ¢’ : X/g — A’ denote the corresponding maps; to complete the proof it
will suffice to show that the natural map (7')* Sol(1)) — Sol(1)’) = Spec A’ is an equivalence.
In other words, we need to show that 7’ is T-local. This follows from Proposition 4.3.6 since
O=n* O‘d' O
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Remark 4.5.11. Theorem 4.5.10 has an analogue for orbifolds which is quite a bit easier
to prove. Let us define a higher orbifold to be an co-topos equipped with a sheaf of discrete
commutative rings which looks locally like a smooth manifold together with its sheaf of
smooth functions. Using the fact that any such oo-topos is locally equivalent to a localic
oo-topos, one can deduce that any higher orbifold admits a (1-connected) étale morphism to
an ordinary orbifold (that is, a higher orbifold whose underlying oco-topos is equivalent to an
oo-category of sheaves on some topos). In this sense, there is not much benefit in discussing
higher orbifolds because they may be understood as ordinary orbifolds together with extra
structure. Theorem 4.5.10 implies that the same thing happens with derived schemes, at
least when the structure sheaf is discrete.

Now suppose that (X, ) is a derived scheme whose structure sheaf O is 0-truncated.
In this case, O is a sheaf of discrete commutative rings on X, which may be thought of as
a ring object in the ordinary category 7o X. Let # : X — A(7<0X). Then 7 is an étale
surjection, so that (A(7<p X), ™, Q) is a derived scheme and the derived scheme structure on
X is obtained by pulling back the derived scheme structure on A(7<oX). We have proved:

Theorem 4.5.12. Let (X, 0) be a 0-truncated derived scheme. Then there exists a ringed
topos (X,0%) and a 1l-connected sheaf of spaces E on X such that (X,0) is equivalent to

((AX)/g, 0% [(AX)/E).

Under the hypotheses of Theorem 4.5.12, the topos X, the sheaf of rings Ox and the
object F € AX are canonically determined by (X, Ox). Of course, the ringed topos (%, Ox)
is not arbitrary: in order for (A¥/g, Ox) to be a derived scheme, the ringed topos (¥, Ox)
must be locally equivalent to the étale spectrum of a commutative ring. This is essentially
equivalent to the classical definition of a Deligne-Mumford stack. In other words, up to a
1-connected étale morphism, a O-truncated derived scheme is just a Deligne-Mumford stack.
One recovers exactly the Deligne-Mumford stacks by restricting attention to the case where
the l-connected object E is final.

Remark 4.5.13. For the purposes of this paper, a Deligne-Mumford stack is a topos
equipped with a sheaf of (discrete) rings which is locally equivalent to the étale spectrum of
a (discrete) commutative ring. This is slightly more general than many standard definitions,
which allow only Deligne-Mumford stacks satisfying certain technical hypotheses regarding
the diagonal. It is the more general definition that compares well with our notion of a derived
scheme.

Remark 4.5.14. The same arguments show that to specify a scheme is equivalent to speci-
fying a Tza-derived scheme (X, Ox) for which Oy is O-truncated and X is localic; that is, X is
generated by its (—1)-truncated objects. The inclusion of the category of ordinary schemes
into the 2-category of Deligne-Mumford stacks may be implemented by the relative spectrum
functor Specgéz‘”. '

Now that we understand derived schemes when the structure sheaf is discrete, let us
proceed to give a characterization in the general case. If (X,0) is any ringed oo-topos
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and 7 > 0, then the assignment U — m; O(U) defines a presheaf of abelian groups on X.
We let 7; O denote its 8heafification; it is an abelian group object of 7<¢ X. In particular,
o O = 7<0 O is a sheaf of commutative rings. We note that each m; O has the structure of a
sheaf of modules over m O.

We need to recall a bit of terminology from [22]. If X is an oco-topos, and f: X — Y is
a morphism in X, then one can define homotopy groups of the mapping fiber of f as certain
sheaves of pointed sets on X,x. The morphism f is said to be co-connected if these homotopy
sheaves all vanish. In many cases, this implies that f is an equivalence; however, this might
not be the case for many oo-topoi of interest to us (such as the étale-spectra of commutative
rings). However, it is always possible to modify X so as to solve this problem by replacing X
by the oo-category X™P of hypersheaves in X. An object Z € X is a hypersheaf if it is local
with respect to oo-connected morphisms: that is, any oco-connected morphism f : X — Y
induces an equivalence Homy(Y, Z) — Homx(X, Z). We shall say that a 8CR-valued sheaf
0 on X is a hypersheaf if its underlying sheaf of spaces is a hypersheaf.

Example 4.5.15. If O is an n-truncated SCR-valued sheaf on X, then O is a hypersheaf.
We are now in a position to give a characterization of derived schemes.

Theorem 4.5.16. Let (X,0) be a ringed co-topos, let X = 7<o X be the underlying topos of
discrete objects. Then (X, 0) is a Ty-derived scheme if and only if the following conditions
are satisfied:

1. The ringed topos (X, Q) is a Deligne-Mumford stack.
2. The adjunction morphism X — AX is étale.

3. Each of the sheaves 7; O on X is quasi-coherent.

4. The structure sheaf O is a hypersheaf.

Proof. First suppose that (X, 0) is a T4-derived scheme. Then (2) holds by Theorem 4.5.10.
To prove (1), (3), and (4) it suffices to work locally on X, so that we may assume that
X = Spec”™® A where A € SCR. Then (%, m O) is equivalent, as a ringed topos, to the étale
spectrum of mpA, which is a Deligne-Mumford stack. Each 7; O is the quasi-coherent sheaf of
modules associated to the mpA-module m;A. The structure sheaf O is a hypersheaf because
it is the inverse limit of its Postnikov tower {7<, O} (which is easy to check on the “basic
affine” opens in X).

For the converse, let us suppose that (X, O) satisfies (1), (2), (3) and (4). We must show
that (X, 0) is a Te-derived scheme. This assertion is local on X, so that using (2) we may
reduce to the case where X — AX is an equivalence. Localizing further, we may suppose
that (X,m 0) is affine. Let X denote the final object of X. Let A = O(X) € SCR. Since

(X, 7<00) is Te-local, we deduce that (X, Q) is Tg-local so that the universal property of
Spec A furnishes a T-local morphism

m: (X,0) — Spec A.
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We must show that « is an equivalence.
Let Oy denote the inverse limit of the Postnikov tower

..—>7’51(9—'->T500.

Then O is a hypersheaf, and there is a natural morphism p: O — Q4. We claim that p is
an equivalence. By assumption (4), it suffices to show that p is co-connected. In other words,
we must show that 7<, O — 7<,, O is an equivalence for each n. It suffices to check this over
each affine; shrinking X if necessary, we reduce to proving that m;(7<, O)(X) =~ m Ox(X)
for i < n. Since Oy (X) is given as the limit of the sequence {{7<;,, ©)(X)}, we see from the
appropriate long exact sequence that it suffices to prove that the sequences {m,((7<m 9)(X))}
and {7Tn41((7<m O)}(X))} are constant for m > n. On the other hand, we may compute
Tn((T<m O)(X)) using a spectral sequence with EfI-term HP(X, my(7<m O)). By assumption
(3) and Grothendieck’s vanishing theorem, this spectral sequence is degenerate and we get
7;((T<n 0)(X)) = (m; O)(X) for n > 4, which does not depend on 7.

Fix n > 0, and let A, = (1<, 0)(X) € SCR. Then A, is n-truncated, so that there is
a natural map ¥, : T<nA — Ap. Using the degenerate spectral sequence considered above,
one shows that 1), is an equivalence. In particular, the ring of global sections (my Q)(X)
is naturally isomorphic to mpA. Since the oco-topos X is equivalent to the étale co-topos
of (mg0)(X) = moA, which is the oo-category of S-valued sheaves on the étale topos of
A, we see that 7 induces an equivalence on the underlying co-topoi. Moreover, the above
computations show that the natural map 7* Ogpec 4 — O is co-connected. Since both sides
are hypersheaves, 7 is an equivalence. O

Remark 4.5.17. Condition (4) of Theorem 4.5.16 could be omitted if we were to work with
t-complete co-topoi: in that case, any sheaf is a hypersheaf.

Remark 4.5.18. It follows from the proof of Theorem 4.5.16 that a derived scheme is (X, O)
is affine if and only if X ~ A7y X and the Deligne-Mumford stack (7<g, 7o O) is affine.

Remark 4.5.19. We may interpret Theorem 4.5.16 as showing that our notion of a derived
scheme is not excessively general. It is, in some sense, the simplest generalization of ordinary
Deligne-Mumford stacks which simultaneously allows for “higher orbifold behavior” and
“higher-order infinitesimals” in the structure sheaf.

4.6 Functors Representable by Derived Schemes

The objective of this section is to show that we may view the oo-category of derived schemes
as a full subcategory of the co-category of sheaves on the big étale site of SER. The first
step is to show that derived schemes actually form an co-category (in other words, that
the oco-category of morphisms Hom(X,Y) between two derived schemes is actually a small
oo-groupoid). More generally, we have the following:
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Proposition 4.6.1. Let T denote the étale topology (the Zariski or Nisnevich topologies
would work easily well). Let X be a T-local ringed oo-topos, and let Y be a T-derived scheme.
Then Hom3(X,Y) is a small co-groupoid.

Proof. First, suppose that Y = Spec A. Then, by definition, Hom¢(X, ¥) = Homgexr(A, O(E)),
where X = (X, 0) and £ € X is the final object.

Now suppose that Y is a disjoint union of affine derived schemes {Y,}aer. In this case,
Hom+(X,Y) is a disjoint union of oo-categories I, Homq(X,, Y, ), where the union is taken
over all decompositions of X as a disjoint union of components { X, }4es. Since there are only
a bounded number of such decompositions, we see that Hom4(X,Y) is a small co-groupoid.

Now suppose that the theorem is known for ¥ = (Y,0y), and let U € Y be any object.
Then Hom¢(X, (Y,u,0y|U)) — Hom4(X,Y) is a fibration of co-categories with fiber over
f X — Y given by the space Homy(E, f*U). Since the base and fiber are both small
oo-groupoids, so is Homq (X, Y).

We now pass to the general case. Since Y = (Y,0y) is a derived scheme, there exists
Up € Y such that (Y,u,, Oy|Us) is a disjoint union of affine T-derived schemes. Let U,
denote the (n + 1)-fold power of Uy, and let Y, = (Y,u,, 0y |U,). For each V € X, let Xy
denote the ringed oo-topos (X, @ |V). Then each Y, is a derived scheme, étale over Yj, so
that Homs(Xv,Y,) is a small co-groupoid for each n, for any V € X. One shows that the
co-category valued sheaf

V — Homg(Xy,Y)

is the sheafification of the co-category valued presheaf
V i | Homo(Xv, Y.)|.

Since each Hom+(Xy, Y,,) is a small co-groupoid, the same is true of the geometric realization
and the desired result follows. a

Consequently, we deduce that the (oo, 2)-category of T-derived schemes is actually an
ordinary oo-category (all of its Hom-categories are in fact small co-groupoids).
Now let (X, ) be a derived scheme. Then (X, O) determines a covariant functor SCR —
S, given by
A — Homq(Spec 4, (X, 0)).

We may regard this correspondence as defining a functor R from the (oo, 2)-category of
derived schemes to the oo-category $5%.

Proposition 4.6.2. The functor R is fully faithful.

Proof. Let X and Y be derived schemes. We must show that Homy(X,Y) — Homgsex (RX, RY)
is an equivalence. One first shows that both sides are sheaves on the underlying co-topos of
X. Thus we can reduce to the case where X = Spec A. In this case, the left hand side is
RY (A) by definition. The equivalence RY (A) ~ Homgsex (R Spec A, RY) follows from the
proof of Yoneda’s lemma. a
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Consequently, it is safe to identify derived schemes with the functors on S€R which they
represent. We now remark that this class of functors has good closure properties:

Proposition 4.6.3. The co-category of derived schemes has all finite limits.

Proof. It suffices to construct fiber products and a final object. The final object is Spec Z. To
construct fiber products X xy Z, it suffices to work locally on X, Y, Z. Then we can reduce
to the case X = Spec A, Y = Spec B, Z = SpecC, so that X Xy Z = Spec A ®g C. O

We end this section by giving a characterization of quasi-coherent complexes on a derived
scheme. Recall that if F : S€R — § is any functor, then we have defined a quasi-coherent
complez M on JF to be a functor which assigns to each n € F(C) a C-module M(n), which
is functorial in 7 in the strong sense that a map v : C — C" induces an equivalence

M(vm) = M(n) ®c C'.

Let us now specialize to the case where F(C) = Hom(SpecC, X), where X is a derived
scheme. Our aim is to show that the abstract definition given above is equivalent to a more
concrete notion, involving sheaves of modules on the underlying oo-topos of X.

If (X,0) is a ringed oo-topos, then we shall denote by Mg the oo-category of sheaves
of O-modules on X. In other words, an object M of My assigns to each F € X a O(E)-
module M(E), such that underlying presheaf of spectra on X is actually a sheaf of spectra.
If M € Mg, then we let m;M denote the sheafification of the presheaf

Vi aM(V).

This is a sheaf of discrete 7y O-modules on X. We shall say that M is a hypersheaf if the
sheaf of spaces E — ()®M(E) is a hypersheaf, where Q2™ : §,; — 8 denotes the “zeroth
space” functor.

Lemma 4.6.4. Assume that T is the étale topology. Let A € SCR, let Spec A = (X, 0), and
define ¢ : M4 — My by letting ¢(M) denote the sheafification of the presheaf

Vi M®gu O(V).

The functor ¢ is fully faithful. Its essential image consists of those O-modules M satisfying
the following conditions:

o Fach Wiﬁ is a quasi-coherent sheaf on the Deligne-Mumford stack (T7<o X, 70 O).
o The sheaf of O-modules M isa hypersheaf.

Proof. The functor ¢ has a right adjoint, given by M— M (E), where E € X is the final
object. Consequently, ¢ is exact and commutes with all colimits. To prove that

Homyy, (M, N) — Homy, (6M, ¢N)
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is an equivalence, we may reduce to the case where M = A. Then the left hand side is the
zeroth space of N and the right hand side is the zeroth space of (¢ N)(E). By construction,
@N is the sheafification of a presheaf whose value on Spec B is given by B®4 N for any étale
A-algebra B. To complete the proof, it suffices to note that sheafification does not affect
the value of N on any object U € X which is the spectrum of an étale A-algebra. In other
words, it suffices to show that the functor

B— B®aN

is an étale sheaf on SC€R?. In fact, it is a sheaf with respect to the flat hypertopology.
The proof of the characterization of the essential image of ¢ is analogous to the proof of
Theorem 4.5.16. O

Theorem 4.6.5. Let X = (X, 0) be a derived scheme for the étale topology. Then the oo-

category QC, is equivalent to the full subcategory of Mo consisting of those O-modules M
satisfying the following conditions:

o EachmM is a quasi-coherent sheaf on the Deligne-Mumford stack (7<o X, 7 O).
o The sheaf of O-modules Misa hypersheaf.
Proof. One shows that the statement is local on X and therefore reduces to Lemma 4.6.4. O

Remark 4.6.6. As with Theorem 4.5.16, we can dispense with the hypersheaf condition if
we choose to work with t-complete oo-topoi.

We will henceforth identify quasi-coherent complexes on derived schemes (X, 0) with the
corresponding sheaves of O-modules.

Warning 4.6.7. If (X, Q) is a derived scheme, then the assignment U — O(U) is not neces-
sarily a quasi-coherent complex on X. The reason is that limits in SCR are not necessarily
compatible with limits of the underlying spectra. When we wish to view the structure sheaf
as a quasi-coherent complex, we must first sheafify it. The resulting sheaf M of O-modules
agrees with O on any affine U, essentially because of Grothendieck’s theorem on the van-
ishing of the cohomology of quasi-coherent sheaves on affine schemes. On a general U € X,
the group m_;(M(U)) = H'(U, Q) is a hypercohomology group of the structure sheaf. We
may occasionally abuse notation by referring to the structure sheaf @ as a quasi-coherent
complex; in this case we are really referring to the sheafification of ) as an O-module.
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Chapter 5

Derived Stacks

The purpose of this section is to develop the “derived analogue” of the theory of Artin stacks.
We recall that an Artin stack is defined to be a groupoid-valued functor on the category of
commutative rings which is a sheaf for the étale topology and which is in some sense “locally”
representable by a scheme with respect to the smooth topology. In the derived context the
definition is similar, except that we replace the ordinary category of commutative rings by the
oo-category SCXR. In this setting the notion of a “groupoid-valued functor” is too restrictive:
even for an affine derived scheme X, the space Hom(Spec A, X ) may have homotopy groups in
arbitrarily high dimensions. Consequently, we must deal with S-valued functors everywhere.
Granting this, it is natural for our theory to encompass also “higher Artin stacks”, which
represent higher-groupoid-valued functors even on ordinary commutative rings. These higher
Artin stacks arise naturally in a number of situations. For example, one may consider the
“n-fold classifying stack of the additive group” Y = K(G,, n), which has the property that
mo Hom(X,Y) ~ H"(X, Ox).

We begin in §5.1 with a definition of derived stacks. The next section, §5.2, contains
a quick discussion of quasi-coherent complexes on derived stacks. In §5.3 we introduce a
few of the more important conditions which may be imposed on derived stacks and their
morphisms.

In order to compare derived stacks with their classical analogues, we shall develop in
§5.4 a mechanism for analyzing an arbitrary derived stack X as the direct limit of its “n-
truncations” 7<,X (which, for n = 0, is determined by functor that X represents on ordinary
commutative rings).

In §5.5, we prove two different analogues of the Grothendieck-Serre theorem on the co-
herence of proper higher direct image of coherent sheaves.

Finally, in §5.6, we study the operation of “gluing” two derived schemes together along
a common closed subscheme.
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5.1 Definition of Derived Stacks

In the last section, we constructed a derived analogue of the ordinary theory of schemes {and,
more generally, Deligne-Mumford stacks). We now enlarge the scope of our investigation to
include a larger class of functors, which we call we call derived Artin stacks. In order to make
this generalization, we will abandon the idea that our geometric objects should be given by
some kind of space with a sheaf of rings, and instead consider them to be &-valued functors
on 8CR (which is a viable approach in the case of derived schemes by the results of §4.6).

We will denote by Shv{8CR?) the oo-category of covariant functors S€R — § which are
sheaves with respect to the étale topology. We shall think of these as being represented by
moduli spaces. We shall say that a map X — Y of objects of Shv(SCR?) is surjective if it
is a surjection of étale sheaves: that is, for any A € SCR and any n € Y (A), there exists an
étale covering {A — A,} and liftings 7, € X (A,) of 77| A,.

We would like to say that X € Shv(SCR) is a derived stack if, in some sense, it is
locally represented by an affine derived scheme with respect to the smooth topology on SCR.
More precisely, we should assume the existence of a “smooth” surjection p : U — X, where
U is a disjoint union of affine derived schemes. Of course, in order to make sense of the
smoothness of p, we need to assume that the fibers of the morphism p form some reasonable
sort of geometric object; in other words, that they are already derived stacks. Consequently,
our definition will have an inductive character. We should begin with some subcategory
So C 8hv(8CR?), which we call 0-stacks, and then inductively define S,;1 to be the class of
functors X admitting a smooth surjection p: U — X, where U is a disjoint union of affine
derived schemes and every fiber U x x Spec A of p lies in S,,. We are therefore faced with
a question of where to begin the induction: that is, what is the right class Sy of 0-stacks?
There are at least three reasonable candidates:

e The most conservative choice would be let Sy be the class of corepresentable functors
on SCR: in other words, the class of affine derived schemes. In this case, S, would be
analogous to the class of n-geometric stacks in the sense of [36]. This is an important
notion which we will return to in [24).

e To conform with the standard terminology in algebraic geometry, we could take Sy to
be some derived analogue of the class of algebraic spaces. More specifically, we could
let Sy denote the class of affine derived schemes (X, O«) for which X ~ A7, X and the
pair (7<o X, 7<o Oyx) is an algebraic space. In this case, the defining property of S5, is
that an object of S, takes n-truncated values when restricted to ordinary commutative
rings.

e We could take Sy to be the class of all functors which are representable by derived
schemes. In this case, a derived stack belongs to S, if and only if its cotangent complex
is (—m — 1)-connected (see Theorem 5.1.12). This has the advantage of leading to
a larger class of objects than the previous alternatives, which includes all derived
schemes. However, this extra generality does not seem to be of much practical use.
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We shall follow the second course in our definition of a derived stack. Either of the others
is possible, although if the third is adopted then some of the results that we shall prove are
only valid under certain restrictions.

Remark 5.1.1. For us, the notion of an algebraic space is more general than the definition
given in [18], since we do not require local quasi-separatedness, or that the diagonal of an
algebraic space is a scheme. However, if X — Y is a relative derived algebraic space in our
sense, then the diagonal X — X xy X is always a relative derived algebraic space in the
stronger sense, since its underlying (ordinary) algebraic space is actually separated.

Proposition 5.1.2. Let X = (X,0x) be a derived scheme. The following conditions are
equivalent:

1. The natural map of co-topoi X — AT<p X is an equivalence, and the Deligne-Mumford
stack (<o X, 7<o Ox) is an algebraic space.

2. The space Hom(Spec A, X)) is discrete whenever A is an ordinary commutative ring.

Proof. If (1) is satisfied, then X and (7<o X, 7<o Ox) represent the same functor on commu-
tative rings, which is set-valued since the latter is an algebraic space.

Conversely, let us suppose assume that (2) is valid. Let ¥ be the Deligne-Mumford stack
(T<0X, T<0 Ox). We may write X ~ (A1<oX),p for some 1-connected object F € AreoX. It
then follows that for A discrete, we have a natural map X(A4) — Y(A) whose fiber over a
map f : Spec A — Y is given by the space of global sections of f*E. Since X (A) is discrete
and Y(A) is 1-truncated, the fiber is itself discrete. Since this is also true for any étale
A-algebra, we deduce that f*F is discrete. Since f*E is 1-connected, it follows that E is
final so that X =~ Ar<o X. Thus, when A is discrete, Y(A) ~ X (A) is discrete. It follows by
definition that the Deligne-Mumford stack Y is an algebraic space. O

We shall say that a derived scheme X is a derived algebraic space if it satisfies the
equivalent conditions of Proposition 5.1.2.

Definition 5.1.3. A morphism p : X — Y in Shv(8CR™) is a relative 0-stack if, for any
map Spec A — Y, the fiber product Spec A xy X is a derived algebraic space. We shall
say that p is smooth if each of the associated maps Spec A xy X — Spec A is smooth as a
morphism of derived schemes.

For n > 0, a morphism p : X — Y in Shv(SCR?) is a relative n-stack if for any map
Spec A — Y there exists a smooth surjection U — Spec A xy X which is a relative (n—1)-
stack, where U is a disjoint union of affine derived schemes. We say that p is smooth if U
may be chosen smooth over Z.

The following bit of temporary terminology will prove useful in proving basic stability
properties of the notion of derived stacks: let us say that a morphism U — X is an n-
submersion if it is a relative n-stack which is smooth and surjective.

We next verify the basic properties of relative stacks:
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Proposition 5.1.4. 1. Any relative n-stack 1s also a relative m-stack for any m 2 n.
2. Any equivalence is a relative 0-stack.

3. Any morphism homotopic to a morphism which is a relative n-stack is itself a relative
n-stack.

4. Any pullback of a (smooth) relative n-stack is a (smooth) relative n-stack.

5 Lt X LY S Zhea composable pair of morphisms. If both f and g are (smooth)
relative n-stacks, then so is go f.

6. Suppose that n > 0 and that we are given morphisms X — Y — Z, where X — Y 1s
an (n — 1)-submersion and X — Z is a relative n-stack. ThenY — Z is a relative
n-stack.

7. Let X LY % Z bea composable pair of morphisms andn > 1. If go f is a relative
(n — 1)-stack and g is a relative n-stack, then f is a relative (n — 1)-stack.

Proof. Claims (1) through (4) are obvious.

We now prove (5). The proof goes by induction on n. Suppose that X - Y andY — Z
are both relative n-stacks. We may assume without loss of generality that Z is affine. If
n = 0, then the hypotheses imply that Y is a derived algebraic space. Working locally on
Y, we deduce that X is a derived scheme. For any ordinary commutative ring A, Y(A) is
discrete and the fibers of the map X (A) — Y (A) are discrete, so that X (A) is discrete. It
follows that X is a derived algebraic space, as required.

If n > 0, then we may choose an (n — 1)-submersion U — Y, where U is a disjoint union
of affine derived schemes. Then the base change U Xy X — X is an (n — 1)-submersion.
Similarly, there is an (n — 1)-submersion V' — U xy X, where V is a disjoint union of affine
derived schemes. The inductive hypothesis implies that f: V — X is an (n— 1)-submersion,
and the conclusion follows. If f and g are both smooth, then we may choose U smooth over
Z and V smooth over U, hence V smooth over Z.

We next prove (6). Without loss of generality we may suppose that Z is affine. By
hypothesis, there exists an (n — 1)-submersion U — X, where U is a disjoint union of affine
derived schemes. Then the composite map U — Y is an (n — 1)-submersion by (5), so that
Y — Z is a relative n-stack.

It remains to prove (7). Once again, we may suppose that Z is affine. Suppose first that
n = 1. Then X is a derived algebraic space. Let Spec A — Y be any morphism; we must
show that X xy Spec A is a derived algebraic space. It is clear that X xy Spec A takes
discrete values on discrete commutative rings, so it suffices to show that X xy Spec A is a
derived scheme. This assertion is local on X and Spec A, so we may assume the existence
of factorizations X — U, Spec A — U, where U — Y is a O-submersion and U is a derived
algebraic space. In this case, X Xy Spec A = X xy (U xy U) xy Spec 4, so it suffices to
show that U xy U is a relative algebraic space. This follows immediately from the definition
of a 0-submersion.
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Now suppose that n > 1. Choose an (n — 2)-submersion U — X where U is a disjoint
union of affine derived schemes. Using part (6), it will suffice to show that p: U — Y is
a relative (n — 1)-stack. Let ¢ : V — Y be an (n — 1)-submersion, where V is a derived
algebraic space. The assertion that p is a relative (n — 1)-stack is local on U; since g is
surjective we may suppose that there exists a factorization U — V — Y, and it suffices to
show that the map U — V is a relative O-stack. This follows immediately from the fact that
both U and V are derived algebraic spaces. o

We next study the cotangent complexes of derived stacks.

Proposition 5.1.5. Let f : X — Y be a relative n-stack. Then f has a cotangent complex
Lx/y. Moreover, Lx;v|n] is connectwe. If f is smooth, then Lx/y is the dual of a connective,
perfect complex.

Proof. The proof goes by induction on n. Without loss of generality, Y = Spec A4 is affine.
If n =0, then X is a derived algebraic space. The assertion that Ly/y exists is local on X,
so we may suppose that X is affine; in this case it follows from Proposition 3.2.14.

Now suppose n > 0. Choose an (n — 1)-submersion U — X, where U is a disjoint union
of affine derived schemes. We must show that for any n € X (B), the functor which carries
M € Mg to the mapping fiber of

X(B® M) — X(B) Xy Y (B & M)

is corepresentable by some (—1 — n)-connected module Lx,y(n) € Mg, and that L x/v(n) is
compatible with base change. Let us denote the mapping fiber in question by QUX,Y,n, M).
Both assertions are local with respect to the topology T, so we may suppose that 1 admits
a lifting 7 € U(B). Shrinking U, we may suppose that U is affine (possibly U no longer
surjects onto X, but we no longer need this). Then we have a natural map of spaces

p: QU,Y, 7, M) - X, Y,n, M).

The mapping fiber of p over 0 € (X,Y, n, M) is naturally equivalent to Q(U, X, n, M). By
the inductive hypothesis, Q(U, X, 7, M) is corepresented (as a functor of M) by Ly x (7).
Since U and Y are affine, Q(U,Y, %, M) is corepresentable by Ly;v(n). We note that the
fiber sequence

QU, X, 0, M) = QUY, 5, M) — QX,Y,n, M)

deloops. Since p is surjective (because U is formally smooth over X ), we may identify
X, Y, n, M) with the mapping fiber of the map of connected deloopings Q! Hom(Ly, x (77), M) —
Q~'Hom(Lyy (7, M)). Since Ly;x(n) is the dual of a connective, perfect complex, the first
connected delooping is given by Hom(Ly,x (77, M[1])), so that Q(X,Y,n, M) may also be
identified with the mapping fiber of

Hom(Ly,x (7), M[1]) — Hom(Ly v (77, M[1])).
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By definition, this mapping fiber is corepresentable by the cokernel of Lyy(7)[—1] —
Lyx(7)[—1], which is also the kernel of Lyy(7) — Ly/x(n). This proves the existence
of Lx/y(n) and the compatibility with base change (since Ly,y and Ly;x are both compat-
ible with base change). It also shows that Lx/y[n] is connective (since Ly,y is connective
and Ly/x[n — 1] is connective by the inductive hypothesis).

If X — Y is smooth, then we may suppose that Ly/y(7) is projective and finitely
generated, and therefore has a connective predual. Then L x,v (1) has a connective predual,
given by the cokernel of Ly;y (1) — Ly x (7)- O

It follows from Proposition 5.1.5 that any smooth relative stack is actually formally
smooth.

So far, we have discussed a relative notion of n-stack, since this was better suited to the
inductive nature of the definition. Now that we have sorted out the basic facts, it is time to
introduce the absolute version of this notion. We will say that X € Shv(8€R™) is a derived
n-stack if X — SpecZ is a relative n-stack.

Remark 5.1.6. An object X € Shv(8CR®) is a derived O-stack if and only if it is a derived
algebraic space. \

Remark 5.1.7. A morphism X — Spec A is a relative n-stack if and only if X is a n-stack.
More generally, a morphism X — Y is a relative n-stack if and only if every fiber product
X Xy Spec A is a derived n-stack.

Proposition 5.1.8. Let X be a derived n-stack. Then X (A) is n-truncated for every discrete
commutative ring A.

Proof. The proof of the first assertion goes by induction on n. For n = 0, the result is
immediate from the definition. Suppose that n > 0, and let z € X (A) be a point. Choose
an (n — 1)-submersion p : U — X, where U is a derived algebraic space. The assertion in
question is local on A, so we may suppose that z admits a lift € U(A). The space U(A) is
discrete, and the inductive hypothesis implies that the fibers of the map U(A) — X(A) are
(n— 1)-truncated. It follows that the connected component of z in X (4) is n-truncated. [

We also have the following:

Proposition 5.1.9. Let X = (X,0x) be a derived scheme and n > 1. The following
conditions are equivalent:

1. As an object of Shv(SCR?), X is an n-stack.
2. If A is a discrete commutative ring, then Hom(Spec A, X) is n-truncated.

3. If we write X = (A7<o X)/g, then E is n-truncated.
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Proof. The implication (1) — (2) follows from Proposition 5.1.8. The reverse implication is
proven by induction on n. Since X is a derived scheme, we may choose an étale surjection
p:U — X, where U is a disjoint union of affine derived schemes. Applying the inductive
hypothesis to the fibers of p, we deduce that p is an (n — 1)-submersion so that X is an
n-stack.

The proof of the equivalence of (2) and (3) is analogous to the proof of Proposition
5.1.2. d

We shall say that an object X € Shv(SCRP) is a derived stack if it is a derived n-stack
for n > 0.

Remark 5.1.10. According to the definition above, not every derived scheme X is a derived
stack. If X = (X, 0x), and X =~ (A7<o X)/g, then X is a derived stack if and only if E is
truncated. As remarked earlier, we could remove this restriction by starting our inductive
definition of stacks by allowing all derived schemes. This leads to a little more generality, but
also to additional technicalities owing to the poor formal behavior of non-truncated sheaves
of spaces in the étale topology.

We have already observed that if X is a derived scheme, then the cotangent complex of
X is connective. Our next goal is to prove the converse of this assertion. First, we need a
lemma.

Lemma 5.1.11. Let p : U — X be a morphism in Shv(SCR®), where U is a derived
scheme. Suppose that p is surjective, and that for each morphism Spec A — X, the fiber
product U x x Spec A is a derived scheme which is étale over Spec A. Then X is a derived
scheme.

Proof. Let us begin with any functor Y € Shv(SCR). We shall call a morphism p: V — Y
étale if any fiber product V' xy Spec A is a derived scheme, étale over Spec A.

We will attempt to represent Y by a derived scheme (Y,0y). We define the oo-topos
Y as follows: the objects of X are étale morphisms V — Y, where V is a derived scheme.
Since any morphism between derived schemes étale over Y is itself étale, one can show
with a bit of effort that Y is an oo-topos provided that it is accessible. We shall gloss
over this technical point (which can be addressed whenever the functor Y is reasonably
continuous: in particular, continuity follows from the existence of a surjection I/ — Y where
U is representable by a derived scheme).

On the co-topos Y there is a tautological SCR-valued sheaf. Namely, we assign to each
(V,0v) — Y the global sections of Oy. It is immediate from the definition that (Y,0y) is
a derived scheme. We shall denote this derived scheme by Y’; it comes equipped with a
(—1)-truncated transformation Y’ — Y. If Y is a derived scheme, then the natural map
gives an equivalence Y’ ~ Y. In the general case, Y’ is the largest subfunctor of ¥ which is
representable by a derived scheme.

Returning to the situation of the proposition, we wish to show that X’ ~ X . It suffices
to show that X’ — X is surjective. Since p is surjective, it suffices to show that U — X
factors through U. This is immediate from the definition. d
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Theorem 5.1.12. Let f : X — Y be a relative stack, and suppose that Lx,y is connective.
Then f is a relative derived scheme.

Proof. The proof is essentially identical to that of the more classical fact that an Artin stack
with unramified diagonal is a Deligne-Mumford stack (which is a special case of Theorem
5.1.12).

Without loss of generality, we may suppose that Y is affine. Let X be a relative n-stack;
we prove the result by induction on n. If n = 0 there is nothing to prove. Otherwise, we may
choose an {n — 1)-submersion U — X, where U is a disjoint union of affine derived schemes.
Then we have an exact triangle

Lx/y|U = Ly)y — Lyyx,

which shows that Ly x is connective. By the inductive hypothesis, U — X is a relative
derived scheme.

We next construct derived scheme U’ over U, which we will obtain by “slicing” U. Con-
sider all instances of the following data: étale morphisms Spec A — U together with m-tuples
{ai,...,am} C moA such that {da;, ..., dan} freely generate mo(Ly/x| Spec A). For each such
tuple, let A’ denote the A-algebra obtained by killing (lifts of) {a1,...,am}, and let U’ de-
note the derived scheme which is the disjoint union of Spec A’, taken over all A’ which are
obtained in this way. Then, by construction, 7 : U' — X is relatively representable by étale
morphisms of derived schemes. Lemma 5.1.11 implies that X is a derived scheme, provided
that we can show that 7 is a surjection of étale sheaves. In other words, we must show that
for any morphism Speck — X (where k € S€R), the induced map Speck xx U’ — Speck
is a surjection of étale sheaves. We note that Speck xx U’ is a derived scheme which is
locally of finite presentation over Speck (since U’ — U is locally of finite presentation and
Speck xx U — Speck is smooth). The vanishing of the relative cotangent complex implies
that Speck x x U’ is étale over Speck, so it suffices to prove that the map is surjective on
ordinary points. In other words, we may reduce to the case where (as suggested by our
notation) k is a field.

Without loss of generality, we may enlarge k and thereby suppose that k is separably
closed. Consequently, the map Speck — X factors through a map f : Speck — Spec A4,
where Spec A is étale over U. Shrinking Spec A if necessary, we may suppose that moLy,x (A4)
is freely generated by the differentials of elements {z;,z, ... ,Im} C moA. These elements
give rise to an étale morphism from Spec A to m-dimensional affine space over X which we
shall denote by A}, Base changing by the map Speck — X, we get an étale morphism of
derived schemes Spec A xx Speck — A}'. By construction, the former space is nonempty,
50 the image of this map is some Zariski-open subset of A7". This image therefore contains
point with coordinates in ko, where ko C k denotes the separable closure of the prime field of
k. Consequently, we may alter the choice of f and thereby assume that {f*z1,..., [*Tm} C
ko C k.

Let A’ denote the (Zariski) localization of A at the image point of f, and let m C mpA’
denote the maximal ideal. To prove that Speck — X factors through U’, it will suffice
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to show that we choose {aj,...,an} C m such that the differentials {dai,...,day,} freely
generate moLy, x(A’). Since moLy,x(A') is free over mpA', Nakayama’s lemma implies that
this is equivalent to the surjectivity of the natural map m Lyy = m/m? — moLyx (k) =
moLap /x (k). Using the long exact sequence, we see that this is equivalent to the assertion
that the natural map ToLap jx (k) — moLy/x 1S zero. Since Ly is connective, moLysx is a
quotient of moLr = Qy/k,. It therefore suffices to show that the differentials of each of the
coordinate functions {zy,...,Zm} vanish in Q. This is clear, since the coordinates take
their values in kg by construction. O

5.2 Quasi-Coherent Complexes on Derived Stacks

Throughout this section, we shall write 7 to denote the étale topology on SCR.

Let X € Shv(8CR?) be a moduli functor. We have already defined the co-category QCy
of quasi-coherent complexes on X. The purpose of this section is to investigate the notion
of a quasi-coherent complex in the special case where X is a derived stack.

Let X € Shv(S8CR™) be a derived stack. Let Sm,x be the co-category whose objects are
given by pairs (A, ¢), where A € 8CR and ¢ : Spec A — X is a smooth relative stack. Define
Mx to be the strict inverse limit of the co-categories M4, taken over all (A, ¢) € Smx. In
other words, an object of Mx assigns functorially to each A € Smx an A-module M,, and
to each factorization Spec A — Spec B — X an equivalence M4 ~ Mp ®5 A.

Using the fact that any map Spec B — X locally factors through some smooth relative
stack Spec A — X, one can prove the following:

Lemma 5.2.1. The restriction functor QCx — My is an equivalence of co-categories.

Recall that if P is any property of modules which is stable under base change, then P
makes sense for quasi-coherent complexes on any X: one asserts that M € QC x has the
property P if the A-module M(n) has the property P for any € X(A). In the case where
X is a derived stack, we can make sense of this notion more generally:

Definition 5.2.2. Suppose that P is a property of modules which is stable under smooth
base change and smooth descent. Let X € 8hv(SCR™) be a derived stack. We will say that
M € QCyx has the property P if p*M has the property P when regarded as an A-module,
for any smooth relative stack Spec 4 — X.

Proposition 5.2.3. Let P be a property which is stable under smooth base change and
smooth descent, let p: X — 'Y be a smooth map between derived stacks, and let M € QCy.
If M has the property P, then so does p* M. The converse holds provided that p is surjective.

Proof. The first claim is clear, since any formally smooth relative stack Spec A — X is also
a formally smooth relative stack over Y. For the converse, let us suppose that p* M has the
property P, and let Spec A — Y be a formally smooth relative stack. Then Spec A xy X
is a relative stack over Z, so there exists a surjective, formally smooth relative stack U/ —
Spec A Xy X where U is a derived scheme. Without loss of generality, we may assume that
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U is a disjoint union of affine pieces. Since p is surjective, the induced map U — Spec A
is surjective. Replacing U by a union of finitely many open affines, we may suppose that
U = Spec B where B is a faithfully flat, smooth A-algebra. Then M| Spec B has the property
P as a B-module, since Spec B — Y factors through a formally smooth morphism to X.
Since P satisfies smooth descent, we deduce that M|Spec A has the property P as an A-
module. O

Applying Definition 5.2.2 to the properties of being (n — 1)-connected and being n-
truncated, we define full subcategories (QCx)»n and (QCx)<n.

Proposition 5.2.4. Suppose that X is a relative stack over a derived scheme. Then the full
subcategories (QCx)>o and (QCx)<o determine a t-structure on QCx.

Proof. Tt is clear that (QCy)»o and (QCyx)<o are stable under the appropriate shifts. If
M € (QCyx)so and N € (QCx)<-1, then Homyg, (p*M,p*N) = 0 whenever p : SpecA — X
is a formally smooth relative stack, so that Homqc, (M, N) = 0 by Lemma 5.2.1. The hard
part is to verify that if M € QCy, then there exists a triangle

M,_VM_)M” i

with M’ € (QCx)»0 and M” € (QCx)<—1. For this, we apply Lemma 5.2.1 again. For each
formally smooth relative stack p : Spec A — X, we can construct a corresponding triangle

of A-modules:
M'(p) — p*M — M"(p).

To complete the proof, it suffices to show that this triangle is functorial in p. In other words,
given any g : Spec B — Spec A such that g o p is also a formally smooth relative stack, we
must show that the natural map M'(p) ®4 B — M'(q o p) is an equivalence.

The fiber product Spec A x x Spec B is a relative stack which is smooth over both Spec 4
and Spec B; since it has a section over Spec B, it surjects onto Spec B. Choose a relative stack
and smooth surjection U — Spec A x x Spec B, where U is a disjoint union of affine derived
schemes. Replacing U by a disjoint union of finitely many of these affine derived schemes,
we may assume that U = Spec C and still guarantee that U — Spec B is surjective. Then C
is an algebra which is smooth over both A and B, and faithfully flat over B. Consequently,
it will suffice to show that M'(p) ®4 B ®5 C — M'(gop) ®p C is an equivalence. To prove
this, one shows that both are equivalent to M’(r), where r : SpecC — X is the natural map.
This follows from the fact that C is flat over A and B, since tensoring with C carries both
of the sequences

M'(p) — p"M — M"(p)

M'(gop) — (p*M)®4 B — M"(gop)

into
M(r)— (p*M)®4 C — M"(r).
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9.3 Properties of Derived Stacks

The purpose of this section is to discuss several properties of derived schemes and derived
stacks and their interrelationships. The discussion is by no means exhaustive; virtually every
notion from classical algebraic geometry has at least one derived analogue.

Throughout this section, T shall denote the étale topology on SCR.

Definition 5.3.1. Let A € SCR, X € Shv(SCR?), and p : X — Spec A a relative 0-stack.
We shall say that p is:

e affine if X ~ Spec B for some A-algebra B.

e a closed tmmersion if X ~ Spec B where myA — 7B is surjective.

If p: X — Y is a relative derived scheme over an arbitrary base, then we say that p
is affine (a closed immersion) if the induced map X Xy Spec A — Spec A has the same
property, for any Spec A — Y.

If P is any property which is stable under base change and local on the source for the
étale topology, then we say that a relative derived scheme p : X — Y has the property P if
for any map Spec A — Y and any étale morphism Spec B — X xy Spec A, the A-algebra
B has the property P. Consequently we may speak of morphisms being locally of finite
presentation, almost of finite presentation, flat, faithfully flat, étale, smooth, and so forth.
If p is a relative derived stack, then we make the same definition for any property which is
local for the smooth topology.

We next introduce a compactness condition for relative stacks.

Definition 5.3.2. If p: X — Y is a relative algebraic space, then we say that p is bounded
if for any map Spec A — Y, if we write X xy Spec A = (X, 0), then the algebraic space
(7<0 X, mp Q) is quasi-compact and quasi-separated. More generally, if p: X — Y is a relative
stack, then we shall say that p is bounded if for each Spec A — Y, there exists a bounded
smooth surjection Spec B — X Xy Spec A.

We note that Definition 5.3.2 is recursive; in order to test whether ornot p: X — Y
is bounded, we need to know whether or not a smooth surjection g : U — X xy Spec A is
bounded. However, this poses no difficulty, since if p is an n-stack, then g is an (n— 1)-stack,
so we eventually reduce to the case of a relative algebraic space. We note that the definition
is consistent, since an algebraic space X is quasi-compact and quasi-separated if and only
if there exists a smooth surjection U — X which is quasi-compact (and quasi-separated),
where U is affine.

It is easy to give a characterization of the bounded derived schemes. For this, we first
need a bit of terminology. Let X denote the étale topos of an (ordinary) Deligne-Mumford
stack X, and let E be a sheaf of spaces on X. We will say that F is constructible if it satisfies
the following conditions:
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e The sheaf of sets myF is constructible in the classical sense. That is, it is a compact
object in the topos X.

e For any étale map Spec A — X and any global section 7 of £ over Spec A4, the homotopy
sheaves 7,(E|Spec A, n) are constructible, and vanish for n > 0.

One can show that constructibility admits a recursive characterization analogous to that
of Definition 5.3.2: an n-truncated E sheaf of spaces on X is constructible if and only if
there is a constructible sheaf of sets Ey and surjection Fy — E whose homotopy fibers are
all constructible. Since these homotopy fibers are (n — 1)-truncated, we eventually reduce
to the case where F is a sheaf of sets, in this case we apply the classical definition.

We shall say that a derived stack X is bounded if there exists a bounded submersion
Spec A — X, or equivalently if X — SpecZ is bounded.

Proposition 5.3.3. Let X = (X, O) be a derived scheme. Let X = (A1<o X)/g. Then X is a
bounded derived stack if and only if the Deligne-Mumford stack (T<o X, mo Q) is quasi-compact
and quasi-separated (with quasi-separated diagonal), and the sheaf E is constructible.

The following properties of bounded morphisms are easily verified:

Proposition 5.3.4. 1. Any identity morphism is bounded. And morphism homotopic to
¢ bounded morphism is bounded.

2. A composition of bounded morphisms is bounded. Any base change of a bounded mor-
phism is bounded.

9. Let X » Y — Z be a composable pair of relative stacks (or relative derived schemes).
Assume that both X — Z and Y — Z are bounded. Then X — Y is bounded. In
particular, if X — Spec A is bounded, then any smooth surjection Spec B — X is
bounded.

Now that we have introduced the class of bounded morphisms, we are in a position to
set up the basic inductive apparatus for proving theorems about derived stacks:

Principle 5.3.5 (Unscrewing). Let P be a property of objects X € Shv(§CRP). Consider
the following conditions on P:

1. Every affine derived scheme has the property P.

2. If Uy — X is surjective, and for each k > 0, the k-fold fiber power Uy of Uy over X
has the property P, then X has the property P.

3. If {X, C X} is a filtered system of open subfunctors of X with union equal to X, and
each X, has the property P, then X has the property P.

If (1) and (2) are satisfied, then every bounded derived stack has the property P. If (1),
(2), and (3) are satisfied, then any derived stack has the property P.
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Proof. First assume that (1) and (2). Let X be a bounded derived n-stack; we must show
that X has the property P. We work by induction on n. If n > 0, then there exists an
(n — 1)-submersion Uy — X, where Uy is affine. Let Uy denote the (k + 1)-fold fiber power
of Up over X; then each Uy is a bounded (n — 1)-stack, so we may suppose that each U, has
the property P. Then (2) implies that p has the property P. Therefore it suffices to treat
the case where n = 0, so that X is a derived algebraic space.

If X is affine, then (1) implies that p has the property P. Next suppose that X is
separated. There exists an étale surjection Uy — X where U, is affine. Since X is separated,
each Uy is affine and affine over X. Consequently, each map U, — X and Uy — Y has
the property P, so that p has the property P by (2). Finally, in the general case, we again
choose an étale surjection Uy — X with U affine. Then Uy is separated and separated over
X. One shows by induction that each Uy is separated over X and over Y, so that Uy, — X
and Uy — Y have the property P. It follows that U has the property P.

If, in addition, condition (3) is satisfied, then the same proof works for any stack. The
only difference is that we cannot assume that the coverings Uy are affine. We can, however,
assume that Up is a disjoint union of affine schemes, and using condition (3) we may employ
a limit argument to reduce to the affine case. O

Remark 5.3.6. We will rarely apply Principle 5.3.5 in precisely the form that it is stated.
More often, we will be discussing relative stacks X — Y. In this case, we need an additional
condition: that a relative stack X — Y has the property P if and only if every base change
X Xy Spec A — Spec A has the property P. Under this assumption (always satisfied in
practice) and assumptions analogous to those of Principle 5.3.5, we may show that every
relative derived stack (bounded relative derived stack) has the property P.

We can also use the argument of Principle 5.3.5 to show that certain properties imply
others. If P is some property of simplicial commutative rings which is stable under smooth
base change, and P’ is some property of functors in Shv(S8CR®), then the argument of
Principle 5.3.5 can be used to show that every derived stack X having the property P locally
also has the property P, provided that the conditions (2) and (3) hold for the property P,
together with the following replacement for (1): If A € S8€R has the property P, then the
derived stack Spec A has the property P

As our first application of Principle 5.3.5, we prove that derived stacks are infinitesimally
cohesive functors:

Proposition 5.3.7. Let p: X — Y be a relative derived stack. Then p 8 nilcomplete and
infinitesimally cohesive.

Proof. Without loss of generality, we may suppose that Y is an affine derived scheme. Then
X is a derived stack, and we must show that X is nilcomplete and infinitesimally cohesive.
Suppose that A € 8CR is the limit of some diagram {4,} in SCR. We further suppose that
this limit has the form of either a tower {7<,A} or a fiber product A ~ B ®pemp B. We
wish to show that the natural map X (A4) — lim{X(A,)} is an equivalence.
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Let Y denote the underlying co-topos of Spec A. We note that Y may also be identified
with the underlying co-topos of each Spec A,. For each Z € Shv(S€R™), we let Fz denote
the object of Y given by restricting Z to étale A-algebras, and F7 the object of Y given
by restricting Z to étale A,-algebras. Let P(Z) be the assertion that the natural map
F, — lim{F%} is an equivalence. We will complete the proof by applying Principle 5.3.5 to
conclude that every derived stack has the property P.

It is obvious that P satisfies conditions (1) and (4) of Principle 5.3.5. Condition (2)
follows from the fact that any open cover of Y has a finite subcover (in other words, the
compactness of the ordinary Zariski spectrum of mpA). To verify (3), let us consider a
submersion Uy — X, and let Uy, denote the (k + 1)-fold fiber power of Uy over X. We must
show that if each U, has the property P, then X has the property P.

We note that lim{FF, } is the (k + 1)-fold fiber power of lim{J7,} over lim{F%}. By
hypothesis, these limits are simply given by Fy,, which is also the (k + 1)-fold fiber power
of Fy, over Fx. It follows that the natural map f : Fx — Um{Fy} is (—1)-truncated, and
so it suffices to prove that f is surjective. Since the natural map Fy, factors through f, it
will suffice to show that the natural map f’: lim{Fy } — lim{F%} is surjective.

In fact, we will show that f' induces a surjection when evaluated on any étale A-
algebra A’. Replacing A by A’, we reduce to proving that the natural map lim{Up(Aq)} —
lim{X (As)} is surjective. ‘

Suppose first that A is given by a small extension B X pgmy) B. Suppose that A’ is
an étale A-algebra, and let B = B®4 A, M' = M ®4 A. We must show that any
point of X(B') X x(meumy) X(B') lifts locally to Up. Since Uy — X is surjective, we may
after localizing further suppose that the corresponding point of X(B' & M’[1]) lifts to a
point of Up(B’' ® M'[1]). Now it suffices to prove that both of the natural maps Up(B') —
Us(B' ® M'[1]) X x(prom) X (B') are surjective. This follows from the fact that Ly, x is the
dual of a connective, perfect complex. This completes the proof of the assertion that every
derived stack is infinitesimally cohesive.

Now suppose that the inverse system {A,} is simply the tower {T<,A} of truncations of
A. Suppose we are given a point of lim{X (T<,A)} over some étale A-algebra A’. Shrinking
A'. we may suppose that the corresponding point in X (7<pA’) lifts to Up(r<eA’). It now
suffices to prove the surjectivity of the map

UO(TSn+lA’) — Uo(TsnA’) XX(TSHA’) X(T£n+1A’)-

This follows from the fact that 7<,.1A’ is a small extension of 7<,A’, the assumption on
Ly,/x, and the first part of the proof. O

We will later show that every derived stack is cohesive (see Theorem 5.6.4).

Corollary 5.3.8. Ifn >0, p: X — Y is a relative n-stack, and A € 8CR is k-truncated,
then the map X (A) — Y (A) is (n + k)-truncated (that is, has (n + k)-truncated homotopy

fibers).

132




Proof. Fix any point n € X(A). It suffices to show that the homotopy fiber of
X(1<i014) = X(155A) Xy(rg;a) Y (72511 4)

is (n + k)-truncated whenever j + 1 < k (where the homotopy fiber is taken over the point
induced by 7). Since 7¢;414 is a square-zero extension of 7<;4, the homotopy fiber is a
torsor for

Homye, (Lx/y (n), (mj14)[7 + 1])
which is (j + 1 + n)-truncated since L,y [n] is connective. O

Corollary 5.3.9. Let X be a derived stack. Then X is a hypersheaf with respect to the étale
topology.

Proof. Since X is nilcomplete, X is given by the inverse limit of the functors A — X (T<nA).
Corollary 5.3.8 implies that each of these functors is a truncated étale sheaf, hence an
étale hypersheaf. Since X is an inverse limit of étale hypersheaves, it is itself an étale
hypersheaf. O

As a second application of Principle 5.3.5, we discuss the functorial characterization of
“almost of finite presentation”.

Proposition 5.3.10. Let p: X — Y be a relative stack. The morphism p is locally of finite
presentation to order n if and only if the following condition is satisfied: for any n € Y (A),
the functor <, S€R 4, — §, given taking the fiber of p over n, commutes with filtered colimits.

Proof. The assertion is local on Y, so we may suppose that Y = Spec A is affine. The proof
of the “only if” direction uses the relative version of Principle 5.3.5: conditions (1) and (3)
are immediate, while condition (2) follows from Theorem 4.4.3 and 4.4.4 by passing to the
geometric realization.

For the “if” direction, we may reduce to the case where Y = Spec B. Suppose that X —
Y satisfies the condition. Any smooth morphism Spec A — X is locally of finite presentation,
and therefore also satisfies the condition. It follows that Spec A — Spec B satisfies the stated
condition, so that A is of finite presentation over B to order n by definition. O

5.4 Truncated Stacks

The property of being an n-truncated object of SCR is local for the smooth topology (or
even the flat topology). Consequently, we may speak of n-truncated derived stacks: a derived
stack X is n-truncated if and only if there exists a submersion U — X, where U is a derived
scheme which is locally equivalent to Spec A for some n-truncated A € 8€R. Equivalently,
X is n-truncated if and only if A is n-truncated for any smooth relative stack SpecA — X.
We note that this notion has no obvious relative analogue.

Definition 5.4.1. Let X be a derived stack. An n-truncation of X is a mapp:Y — X of
derived stacks, where Y is n-truncated and X (A) ~ Y (A) for any n-truncated A € $CR.
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Remark 5.4.2. If p: Y — X induces an equivalence Y (A) ~ X(A) for any n-truncated
A € 8€R, then Hom(Z,Y) — Hom(Z, X) is an equivalence for any n-truncated derived
stack Z (apply Proposition 5.3.5).

Remark 5.4.3. If p: X — Y is smooth and Y is n-truncated, then X is also n-truncated.
The converse holds if p is surjective.

We first prove that n-truncations exist:
Proposition 5.4.4. Let X be a derived stack. Then there exists an n-truncation for X.

Proof. If X = (X,0) is a derived scheme, then we may take Y’ = (X,7<, 0). In order to
handle the general case we apply Proposition 5.3.5. The only nontrivial point to verify is
that if Uy — X is a submersion, Uy the (k + 1)-fold fiber power of Uy over X, and each Uy
has an n-truncation Vi, then X has an n-truncation. Since each U, — Uy is smooth, the
fiber product Uy, Xy, V5 is n-truncated and therefore equivalent to Vj.

Let Y = |V,| as T-sheaves on SER. One easily checks that V. is a groupoid object and
therefore effective, so that Vi =~ V4 xy Vo. Then Vy — Y is surjective; it suffices to show
that V; — Y is a submersion. Choose any map 7 : Spec A — Y; it suffices to show that
Spec A xy V, is a relative stack smooth over Spec A. The assertion is local on Spec A, so we
may assume that 7 factors through V5. Then Spec A xy Vj =~ Spec A xy, V1 = Spec A xy, U
is a relative stack smooth over Spec A, as desired. O

If X is a derived stack, we shall denote its n-truncation by 7<,X. We have a natural
directed system

TSOX — T£1X — ...

Proposition 5.4.5. Let X and Y be derived stacks. Then Hom(X,Y) is equivalent o the
limit of the tower {Hom(1<p,X,Y)} = {Hom(7<nX, 7<nY )}

Proof. By applying Principle 5.3.5 to X, we may reduce to the case where X is affine. In
this case, the assertion follows from the fact that Y is infinitesimally cohesive. Il

We may interpret Proposition 5.4.5 as asserting that a derived stack X may be recovered
from its truncations X, = 7<nX. The following result shows that there are essentially no
restrictions on the X, other than the obvious ones:

Proposition 5.4.6. Suppose given a sequence {Xo, X1,...,} of derived stacks, and equiv-
alences X; ~ 1<;X;+1 (50 that each X is i-truncated). Then there ezists a derived stack X
and a coherent family of equivalences X; ~ 1<; X.

Proof. If A is n-truncated, we let X (A) denote the direct limit of the sequence of spaces
{Xm(A)}. We note that the sequence in question is constant for m > n. For general 4,
we let X(A) be the inverse limit of the spaces X (<nA). It is clear that X, and X agree
on n-truncated objects. Since X, is n-truncated, this furnishes a family of equivalences
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Xy = 7<, X which are easily seen to be compatible with the equivalences X, ~ T<nXns1. 10
complete the proof, it suffices to show that X is a derived stack. The assertion is local on
Xo, 80 we may suppose that X is a derived k-stack. We prove the result by induction on &.

First suppose that k& = 0, so that Xy = (X,) is a derived scheme. One can then
check that each X; is representable by a derived scheme (X, 0;) having the same underlying
oo-topos. One may then take X to be the derived scheme (X, O.), where O, is the inverse
limit of the sequence {0;}.

If £ > 0, then there exists a submersion pg : Uy — X, where Uy is a disjoint union of affine
derived schemes. Now we claim that Uy admits a thickening to a 1-truncated derived scheme
U; which is smooth over X, and such that Uy ~ 7<oU;. The obstruction to the existence of
this thickening lies in 7, Homgqg,, (Luoe/x0, PeM), where M is the quasi-coherent complex on
Xo given by the difference between the structure sheaves of X 1 and Xp. This group vanishes
since M is connective (even O-connected), Ly, x, is locally free, and Uj is a disjoint union
of affine schemes.

Iterating this argument, we obtain an inverse system {U;} of infinitesimal thickenings of
Up. Since Uy is a derived scheme, we may construct the direct limit of these thickenings U
as a derived scheme. To complete the proof, it suffices to show that U — X is a (k — 1)-
submersion. It is easy to show that U — X is surjective, so it suffices to prove this result after
base change to U. In other words, we must show that U Xx U — U is a (k — 1)-submersion.
This follows from the inductive hypothesis. O

Corollary 5.4.7. Let X — Spec B be a morphism in Shv(8CR?), and suppose that X is
infinitesimally cohesive. Suppose further that each X, = X X spec B SPec(T<nB) 15 a derived
stack. Then X is a derived stack. Moreover, if each X, is almost of finite presentation over
T<nB, then X is almost of finite presentation over B.

Proof. Let X| = 7<,X,. We note that X, X,,, and X/ have the same values on any 7-
truncated object of SCR. Consequently, there are natural equivalences X! ~ 7, X! 41, SO
by Proposition 5.4.6 we can glue together the X! to make a derived stack X’. By con-
struction, X' and X define the same functor on truncated objects of SCR. Since X (A) ~
Hm{X (1<nA)} = lm{X'(7<,A)} = X'(A), we deduce that X and X’ are equivalent so that
X is a derived stack.

'To prove the last claim, we may work locally on X and therefore assume that X = Spec A.
To show that A is almost of finite presentation over B, it suffices to show that A is of finite
presentation over B to order n for each n > 0. This follows from the fact that A ®5 (1<, B)
is of finite presentation over 7<,B to order n. O

We now formulate another sense in which a derived stack X behaves like the direct
limit of its truncations 7<,X. Let QC; denote the (strict) inverse limit of the co-categories
QC, X Then there is a natural restriction map ¢ : QCx — QCy, and a “completion”
functor v which is right adjoint to ¢ (given by forming inverse limits). It is not always the
case that ¢ and 1 are inverse equivalences. However, we can assert the existence of such an
equivalence for connective complexes. Here we say that an object {M, n} € QCy4 is connective
if each M,, € QC _x ls connective.

135



Proposition 5.4.8. The functors ¢ : QCx — QCx and v - QCx — QCx carry connective
objects into connective objects, and the adjunction morphisms M — oM and pyN — N
are equivalences whenever M and N are connective.

Proof. The assertion is local so we may reduce to the case where X = Spec A for A € SCR.
Let M be an A-module. Then ¥¢pM = lim{M ®,4 7<nA}. If M is connective, then m;M =~
7i(M @4 T<nA) for i < n. Passing to the limit, we deduce that M ~ oM.

Now suppose that N = {N;} € QCjy is given by a compatible family of 7<;A-modules
N;. Then ¥ N is given by the inverse limit lim{N;}, so that we have for each k a short exact
sequence

0 — Uim'{m 1 N;} — mey N — lim®{m,N;} — 0.

If each NN; is connective, then this exact sequence shows that m;(¢)N) vanishes for ¢ < —1.
Moreover, the sequence mglV; is constant, so the corresponding lim*-term vanishes and we
get also m_1(¥N) = 0. Thus ¥V is connective.

To show that the adjunction ¢¥»N — N is an equivalence, it suffices to show that its
cokernel K vanishes. Since ¢ is equivalent to the identity, we deduce that YK = 0. If
N is connective, then K is connective. Choose n minimal such that 7, K, # 0. Then one
deduces that the sequence {7, K;} is constant, and makes a nonzero contribution to m, (¥ K),
a contradiction. g

We conclude this section by setting up a framework for direct limit arguments. If A € S€R
is the colimit of a filtered system {Aq}, then one would like to say that the theory of derived
stacks over Spec A may be obtained as a sort of direct limit of the theories of derived
schemes over the Spec A,. Of course, this is not true in complete generality, but requires
some finiteness conditions on the derived schemes in question. The most natural finiteness
condition would assert that the derived schemes in question are locally of finite presentation
over Spec A. However, this condition will turn out to be too restrictive for many purposes.
On the other hand, if X is almost of finite presentation over Spec A, then X need not arise
as the base change of some derived scheme X, over some A,. However, we will show that
we can often approzimate X by derived schemes over some A,, and this will be sufficient for
our later purposes.

The following result has essentially already been proven:

Proposition 5.4.9. Let Aq € SCR and let {A.} be a filtered system of Ag-algebras having
colimit A. Let X and Yy be derived stacks over A, let Xo = Xo Xgpec Ao OP€C A, Yo =
Yo X Spec Ao SPeC4_, X = Xo Xspecao SPeCA and Y = Yo Xspec 4 Spec A.

If Xq is bounded and Yy is locally of finite presentation to order n over Spec Ag, then

colim Homgpec a, (T<nXa, T<nYa) — Homspee 4 (T<n X, 7<nY)

s an equivalence.

Proof. Using Principle 5.3.5, we may reduce to the case where X is affine. Then the result
follows immediately from Proposition 5.3.10. a
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It remains to show that, under suitable finiteness conditions, any derived stack X over
Spec A may be obtained as the base change of a derived stack over some Spec Ag:

Proposition 5.4.10. Let {A,} be a filtered system in SCR having colimit A. Suppose that
X is a derved stack which is bounded, n-truncated, and locally of finite presentation to
order n over Spec A. Then there exists an indez «, a derived stack X, which is bounded,
n-truncated, and locally of finite presentation to order n over Spec A,, and an equivalence
X > T<n(Xa Xspec 4, Spec A).

Proof. We apply Principle 5.3.5. Suppose first that X = Spec B is affine. Then B = T<n B,
where B’ is of finite presentation over A. Lifting cell-by-cell, we may construct (for sufficiently
large a) an A,-algebra B[ together with an equivalence B!, ®4, A. Then we may take
Xo = Spec(r<nB.).

To complete the proof, let us suppose that X is a derived stack which is bounded, n-
truncated, and locally of finite presentation to order n over Spec A, and that Uy — X is a
submersion with Uy affine. Let U denote the (k + 1)-fold fiber power of U, over X; we may
suppose that the theorem is known for each Uy. Choose m > 0 such that X is an m-stack;
then X (B) is (n 4+ m)-truncated whenever B is n-truncated. It follows that for & > n + m,
T<nUs is the k-truncation of the kth space of the (k —1)-coskeleton of U,. Since Uy, is smooth
over X and X is n-truncated, we deduce that U, is (n + m)-coskeletal. Consequently, if a is
sufficiently large, then U, is the n-truncation of the base change of an (n + m)-coskeletal, n-
truncated simplicial stack (U,). over Spec A,. Enlarging o if necessary, we may ensure that
(Ua)s is & smooth groupoid, and then we may take X, to be its geometric realization. O

Of course, it is possible to prove many similar and related results. In particular, in the
next section we will need to know that if M € QC, is n-truncated and perfect to order
n, then for a sufficiently large there exists M, € QC x,» Which is perfect to order n, and
an equivalence M =~ 7<,{M,|X). The proof may be given along the same lines as that of
Proposition 5.4.10.

5.5 Coherence Theorems

Throughout this section, T shall denote the étale topology.

Definition 5.5.1. A morphism p: X — Y in 8hv(S$€R) is proper if it is a relative derived
scheme, almost of finite presentation, and for any morphism Spec A — Y, the fiber product
X xy Spec A = (Z,0z), where Z ~ Ar¢qZ and the Deligne-Mumford stack (T<0 Z,mp Og) is
proper over mgA in the usual sense.

Remark 5.5.2. Our definition of proper morphisms is slightly more restrictive than the
standard definition because we require proper morphisms to be almost of finite presentation.
This disallows, for example, closed immersions for which the ideal sheaf is not locally finitely
generated. Otherwise, our definition is the obvious derived analogue of the usual notion of
a proper morphism.
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Remark 5.5.3. If p: X — Y is a morphism between derived stacks which is almost of finite
presentation, then the condition that p be proper is a purely “topological” notion. That is,
p is proper if and only if the induced map 7<cX — T<oY is proper, so that the condition of
properness is insensitive to the higher homotopy groups of the structure sheaves.

We next study the pushforward functor on quasi-coherent complexes. Suppose that
p: X — Y is a relative stack. If Y : 8CR? — 3, then so is X. Then both QCy and QCyx
are presentable co-categories. The restriction functor p* : QCy — QCx commutes with all
colimits, and therefore has a right adjoint by the adjoint functor theorem. We shall denote
this adjoint by p,. In general, the functor p, may be very poorly behaved. However, if p is
a relative derived algebraic space, then we can say a great deal about p,. First, we need a
lemma.

Lemma 5.5.4. Let X be an (ordinary) algebraic space which is quasi-compact and separated.
Then there exists n > 0 such that for any quasi-coherent sheaf M on X, H™(X, M) =0 for
m > n.

Proof. Choose an affine scheme U and an étale morphism p : U — X. We may take n to be
an upper bound for the number of points in the geometric fibers of p (to see this, compute
the cohomology using strictly alternating cochains). a

Proposition 5.5.5. Letp: X — Y be a bounded, separated, relative derived algebraic space.

1. The functor p. ezxists and commutes with all colimits.

2 Let g :Y' — Y be any morphism, let X' = X xy Y', and let p' : X' — Y’ and
¢ : X' = X be the induced maps. The natural base change morphism ¢*p. — p.(q)*
is an equivalence of functors QCx — QCy..

3. If p is affine, then p, carries connective complezes into connective complezes.

4. If p is of Tor-amplitude < k, then p, carries complezes of Tor-amplitude < n into
complezes of Tor-amplitude < (n + k).

5. If p is proper, then p, carries almost perfect complezes into almost perfect complezes.

6. If p is proper and flat, then p. carries perfect complexes into perfect complezes.

Proof. First suppose that Y = Spec A is affine. In this case, X = (X, 0) is a bounded
derived algebraic space, and p, exists by the adjoint functor theorem. We may identify QCy
with M4 and QCy with a full subcategory of My. In this case, p. is simply given by the
global sections functor. If M is a discrete O-module, then the homotopy groups of p,M are
simply the cohomology groups of M, regarded as a quasi-coherent sheaf on the underlying
ordinary algebraic space of X. Since X is bounded, this algebraic space is quasi-compact
and quasi-separated, so Lemma 5.5.4 implies that there exists n such that 7mp.M = 0 for
m < n.
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By induction, one shows that if M € QCy has homotopy groups only in the range
[a,a+1,...,b-1,b], then p, has homotopy groups only in the range [a—n,a—n+1...,b~1,b).
Since p, commutes with inverse limits, we have p, M = lim{p.(r<xM)}. Moreover, for each
m the sequence of homotopy groups {7, (p.7<xM)} is constant for £ > m + n. Thus all
lim'-terms vanish and we obtain isomorphisms TmPsM ~ T (puT<x M) for k > n+m. In
particular, if M is j-connected, then p,M is (j — n)-connected.

To prove that p, commutes with all colimits, it suffices to show that p, commutes with
direct sums, and for this it suffices to show that m,,p, commutes with direct sums. Since
TmP« M depends only on T<min>mM, it suffices to prove that p, commutes with direct sums
on T<m+n,>m QCyx. To prove this, we choose a submersion Uy — X, where Uy is affine, and
let Uy denote the (k4 1)-fold fiber power of Uy over X. Then there exists a spectral sequence
with Ey-term given by m, M|Uy, = m,4p. M. Since only finitely many terms in this spectral
sequence can contribute to a particular homotopy group of p, M, and the formation of the
spectral sequence is compatible arbitrary direct sums in M, the desired result follows.

One can always construct a push-pull morphism (p,M) ® N — P.(MQ@p*N). If N = A,
then this morphism is an equivalence. Since p, commutes with colimits, we deduce that
the push-pull morphism is always an equivalence. In the special case where A — B is a
morphism in S€R and we take N = B as an A-module, we deduce that (2) holds when
Y’ =Y is a transformation of affine derived schemes.

Now suppose that p : X — Y is arbitrary, and that M € QCy. Define p, M € QCy
by the equation py M(n) = p,M|X’, where 5 : Spec A — Y is any morphism, X’ = X xy
Spec A, and p’ : X' — SpecA is the projection. The fact that the push-pull morphism
is an equivalence implies that p, M is compatible with base change, and therefore gives a
well-defined quasi-coherent complex on Y. It is then easy to see that p+M has the correct
universal mapping properties, so that p,M = p, M exists. Moreover, this construction shows
that p, commutes with filtered colimits and base change in general. This proves (1) and (2).
Part (3) may be reduced to the affine case, where it is obvious.

Now suppose that p is of Tor-amplitude < k and that M € QC x is of Tor-amplitude
<n. If N € QCy is discrete, then p*N is k-truncated, so that M @p*N is (n+ k)-truncated.
Thus p.(M ® p*N) = (p.M) ® N is (n + k)-truncated. This proves (4).

To prove (5), we first reduce to the case Y = Spec A is affine. Choose n as above so
that mmp.M depends only on m M for & < m + n. We wish to show that if M € QCy is
almost perfect, then p,M is almost perfect. Since X is bounded, M is almost connective;
by shifting we may suppose that M is connective. It suffices to show that p.M is perfect to
order m for each m > 0. We note that this condition depends only on myM for k < m + n.
We may therefore apply Proposition 5.4.10 (and the comments that follow it) to obtain
Ao € SCR which is of finite presentation over Z, a derived algebraic space Xy which is
(m + n)-truncated and locally of finite presentation to order (m + n) over Spec Ay, and
a connective quasi-coherent complex M, ¢ QCyx, which is (m + n)-truncated and perfect
to order (m + n), with identifications of the (k 4- n)-truncations of the pair (X, M) with
the (k + n)-truncations of the pair (Xo ®spec 4, Spec A, Mo|X). We note that since A, is
Noetherian, X, is almost of finite presentation over Ag. Enlarging Ag if necessary, we may
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suppose that X, is proper over Spec Agp. We may therefore replace A by Ao and X by
Xo, thereby reducing to the case where A is Noetherian and M is truncated. Using the
appropriate exact triangles, one can reduce to the case where M is discrete. The assertion
that p,M is almost perfect is equivalent to the assertion that each cohomology group of
M (considered as a quasi-coherent sheaf on the underlying algebraic space of X) is finitely
presented as an A-module. This follows from the classical coherence theorem for proper
direct images of coherent sheaves.

Finally, (6) follows immediately from (4) and (5). a

Of course, the condition that p: X — Y be a separated relative derived algebraic space
is very strong. Consideration of p. for more general morphisms p seems to raise delicate
issues involving the commutation of limits and colimits. In order to avoid these issues, we
will restrict our attention to truncated quasi-coherent complexes.

Proposition 5.5.6. Let p: X — Y be a bounded morphism between derived stacks. Then:

1. The functor p, ezists, and commutes with filtered colimits when restricted to 7o QCx.

2. When restricted to truncated complezes, the formation of p. is compatible with base
change by any relative stack Y' — Y of finite Tor-amplitude.

3. For any truncated M € QCyx and any N € QCy of finite Tor-amplitude, the push-pull
morphism p,M ® N — p,(M ® p*N) is an equivalence.

Proof. The existence of p, follows from the adjoint functor theorem. To prove the rest,
we first suppose that Y = Spec A is affine. We then apply Principle 5.3.5 to the derived
stack X. If X is affine, then (1), (2) and (3) are obvious (and require no truncatedness
or Tor-amplitude assumptions). Now suppose that Uy — X is a submersion, Uy is the
(k + 1)-fold fiber power of Uy over X, and the result is known for each gy : Up — Y. If
M € QCy, then p,M is the geometric realization of the cosimplicial A-module (g ).(M|U.).
Then (1) follows from the spectral sequence for computing m,p.M, with E} -term given by
Ta{q_p)«M|U_y, which is compatible with filtered colimits and contains only finitely many
pieces which contribute to a given m,. To prove (3), we write N as the filtered colimit of
a system of finitely presented A-modules N,. If N has Tor-amplitude < a and M is b
truncated, then M ® p* N ~ colim T<o+sM ® N,. Using (1), we may reduce to the case where
N is finitely presented. Using various exact triangles we may then reduce to the case where
N = A, which is obvious. We note that if Y is affine over Y, then (2) is really a special case
of (3).

Now suppose that Y is an arbitrary derived stack. If n : Spec A — Y is smooth, let us
define (p+ M)(n) to be the A-module p, M|X’, where X' = X xySpec A and p' : X — Spec A
is the projection. If U and U’ a derived schemes which are smooth over Y, then any map
U — U over Y is quasi-smooth, and therefore of finite Tor-amplitude. It follows that
if M is truncated, then p,M is compatible with base change, and therefore gives a well-
defined object in My =~ QC,. When regarded as a quasi-coherent complex on Y, py M

140




has the appropriate universal property and is therefore naturally equivalent to p,M. This
construction of p, allows us to reduce the proofs of (1), (2) and (3) to the affine case which
was handled above. O

We next prove a slightly different version of the coherence theorem, which seems to
require working in a Noetherian setting.

Proposition 5.5.7. Let Y be a Noetherian derived stack, and let p : X — Y be a proper
morphism. If M € QCyx is truncated and coherent, then p,M € QC, is truncated and
coherent.

Proof. Without loss of generality we may suppose Y = Spec A is affine, where A € SCR is
Noetherian. We note that m;p,M does not change when we replace M by 75;M. Thus, we
may suppose that M has only finitely many nonvanishing homotopy groups. An induction
reduces us to the case where M has only a single nonvanishing homotopy group. By shifting,
we may suppose that M is discrete. In this case, M may be regarded as a coherent sheaf
on the underlying Deligne-Mumford stack of X, which is proper over Spec myA. The m,p, M
are simply given by the cohomology groups of this coherent sheaf. The classical coherence
theorem for proper direct images (see [20] for a proof in the context of proper Deligne-
Mumford stacks) implies that these modules are finitely generated over moA, as desired. O

As a corollary, we may deduce the following result which will be needed later:

Corollary 5.5.8. Let p : X — Spec A be a proper, flat, relative algebraic space, and let
M € QCx be almost perfect. Then there exists an almost perfect A-module M’ equipped with
a morphism M — p*M' which induces an equivalence

Homyy, (M', N) — Homgqg, (M, p*N)
for every A-module N.

Proof. To prove that M’ exists, it suffices to prove the existence of 7<, M’ having the universal
property
Homyy, (T<n M’, N) ~ Homgqg, (M, p*N)

whenever N is n-truncated; we can then obtain M’ by taking an inverse limit. We note that
if N is n-truncated, then so is p*N (since p is flat), so that the space on the right depends
only on 1<, M. Consequently, we may employ a direct limit argument to reduce to the case
where A is of finite presentation over Z. In this case, A has a dualizing module. We now
simply apply Theorem 3.6.9 to the functor N — Homggc, (M, p*N). O

5.6 Gluing along Closed Subschemes

Since the co-category SCR is a presentable, it has arbitrary limits; in particulaf, we may
construct fiber products A x B. Note that Spec(A x¢ B) is a pushout Spec A spec o Spec B
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in the co-category of affine derived schemes. However, the fiber product construction in SCR
has extremely poor behavior from an algebraic point of view (even for ordinary commutative
rings), so there is very little else that can be said about Spec(A x¢ B) in general. However,
if A— C and B — C are both surjective morphisms, then the fiber product A x¢ B is well
behaved and we can say a great deal.

We first consider the behavior of modules over R = A Xg B. We let M4 X, Mp denote
the (strict) fiber product of the oo-categories M4 and Mp over M¢. In other words, an
object of M4 Xy, Mg is a triple (M4, Mp, h) where My € Ma, Mp € Mp, and h is an
equivalence between M4 ®4 C and Mg ®p C. There is an obvious functor

d):MR—*MAXMCMB

which may be described (on objects) by the formula ¢(M) = (M Qg A, M ®r B, h), where
h is the natural equivalence (M ®r A) ®4C ~ M @5 C ~ (M ®g B) ®g C. Moreover, ¢
has a right adjoint 1 which may be described by the formula

'l,b(MA, M57 h) = MA XMC MB,

where M(_‘} = MA ®a C ~ MB ®p C.

Suppose that A — C and B — C are surjective morphisms in 8CR. Geometrically,
these morphisms correspond to closed immersions, and A x¢ B € SCR is the “affine ring” of
functions on the space which is obtained by gluing the spectra of A and B along the closed
subset corresponding to the spectrum of C. We would like to assert that ¢ and % are inverse
equivalences in this case. Unfortunately, this is not true in complete generality.

Example 5.6.1. Let A = k[z], B = k[y|, and C = k, where k is a field and the morphisms
A — C and B — C are given by sending z and y to zero. Let M4 denote the A-module which
is the direct sum of copies of C[i] for i odd, and let Mz be the B-module which is the direct
sum of copies of C|i] for i even. Then M4®4C and Mp®pC are C-modules whose homotopy
groups are 1-dimensional in each degree. Choose any equivalence My®4C ~ Mp®gC ~ Mc.
One easily checks that the fiber product M4 x s, Mp is zero as an A x¢ B-module. Thus,
1 is not faithful.

However, we can assert an equivalence which is valid for connective modules.

Proposition 5.6.2. Suppose that A — C and B — C are surjective morphisms in 8CR
with fiber product R = A X¢ B. The natural functor

¢ :Mp — My Xy, Mp
is fully faithful and induces an equivalence
(Mr)>0 — (Ma)z0 X (Ma)>0.

Proof. Given any object (M4, Mg, k) € M4 Xy, Mp, we will write Mg for My ®4 C (which
is equivalent Mg ®p C via h). We let ¢ denote the right adjoint to ¢ described above. The
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existence of ¢ implies that ¢ commutes with all colimits. To prove that Homg, (M, N) ~
Hom(¢M, ¢ N}, it suffices to treat the case where M = R[;j]. In other words, we need only
show that N =~ (N ®@g A) Xngc (N ®g B). This follows by tensoring the exact triangle

R—-AoB-C

by N.

We may use ¢ to identify Mg with a full subcategory of My X, Mp. Suppose that
M = (Ma, Mg, h) € My X, Mg. We shall call M connective if both M4 and Mg are
connective. To complete the proof, we need to show that every connective object belongs
to the essential image of ¢. In other words, we wish to show that if M is connective, then
the cokernel K of the adjunction map ¢ywM — M is zero. Since M is connective, so is
1wM, and therefore so is ¢ty M; thus K is connective. On the other hand, K = 0. Let
K = (Ka,Kp,9). If K # 0, then there exists some least value of n > 0 such that K[—n] is
connective and m, K4 & m, Kg # 0. In this case, there exists a short exact sequence

0=m K — 1,K4 x 7,Kg — 7, Kg — 0.

On the other hand, m, Ko = Torg"A(ﬂ'nKA,wOC') = Torg"B('frnKB,vroC'), so that 7,Kg ~
TnK 4 © T Kp. Since myA — moC and meB — myC are both surjective, the maps T, K4 —
K¢ and 7, Kp — m, K¢ are surjective. This implies that 7, K4 = m,Kp = 0, a contradic-
tion. ]

Our next goal is to show that (assuming the appropriate surjectivity conditions) Spec(Ax ¢
B) is given by the pushout SpecA]_[speC cSpec B in a larger oo-category of derived stacks.
It will be convenient to state and prove this result in a relative form; for this we need a bit
of notation. Let p : X — Y be a map in Shv(SCR?). If n € Y(R), we let F7 denote the
homotopy fiber of X(R) — Y (R) over 7, considered as a sheaf on Spec R.

Lemma 5.6.3. Let p : X — Y be a smooth surjection and a relative derived stack, let
f 1 A — B be a surjective morphism in 8CR, and let F : Spec B — Spec A denote the
corresponding closed immersion of derived schemes. Choose anyn € Y(A), and let i’ denote
the restriction of ) to Y{(B). Then the natural map Fy — F.F7, is a surjection of étale
sheaves on Spec A.

Proof. Without loss of generality, we may replace ¥ by Spec A. The surjectivity of X — Y
remains valid for some X(;), so we may suppose that X is a relative n-stack over Y. Then
there exists an (n — 1)-submersion U — X, where U is a disjoint union of affine derived
schemes. Replacing X by U, we may suppose that X is a disjoint union of affine derived
schemes. Replacing X by a sufficiently large finite union of components of X, we may
suppose that X = SpecC, where C is smooth over A. We must show that any A-algebra
map C' — B factors an étale neighborhood of B in A.

Locally C has the form of an étale algebra over Alz, ..., Tm). Since A — B is surjective,
the associated map Alz),...,zn,] — B factors through A. Consequently, the map C — B
factors through C ® ajs, ..z, A, Which is an étale neighborhood of Spec B in Spec A. d

-----
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We apply this to prove that if A — C and B — C are surjections in SCR, then Spec(4 x¢
B) may be interpreted as a pushout Spec 4 [[g,.. o Spec B.

Theorem 5.6.4. Suppose that p : X — Y is a relative stack. Let A — C, B — C
be surjective morphisms in SCR and n € Y (A x¢ B). Let i : SpecA — Spec A X¢ B,
j : SpecB — Spec A x¢ B, and k : SpecC — Spec A x¢ B be the corresponding closed
immersions of affine derved schemes.

Let n4, ng, and nc denote the corresponding elements of Y (A), Y(B), and Y(C). Then
the natural map ¢ : Fo — 1, TF Xy, 58, Jx F7, is an equivalence. In other words, the mor-
phism p is cohesive.

Proof. Once again, we will deduce the theorem by applying Principle 5.3.5. Conditions (1)
and (3) are obvious, so we just need to check condition (2). Let Uy — X be a submersion,
U, denote the (k + 1)-fold fiber power of U over X, and let g, : Uy — Y be the natural
map. We suppose that the conclusion is known for each gc. Then

I = | TP | = i FL, Xpu 5005 Ty |-

Since Fp = 1. F5% X4, 39 Ju Fin is the (n+1)-fold fiber power of Fo over i, Fha Xk, 2, I F?

TA ne’

it suffices to prove that
Fo — ia 3’1’;.4 Xk 3=,‘;ij 3:11;5

is surjective. To prove this, one begins with the surjection
BT - 55T

and applies Lemma 5.6.3 twice. |
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Chapter 6

Formal Geometry

The purpose of this section is to sketch the development of formal geometry in the derived
context, going so far as a version of Grothendieck’s formal GAGA theorem. Strictly speaking,
the results of this section are not needed in the proof of our representability theorem or to
verify its hypotheses. Given a problem in “formal” derived algebraic geometry, we will
generally be able to decouple the “formal” aspects from the “derived” aspects and treat
them separately. However, one can just as easily treat them simultaneously using the ideas
described in this section.

We begin in §6.1 with the requisite commutative algebra: p-adic topologies on simplicial
commutative rings and the corresponding completion constructions. In §6.2 we consider a
related, but slightly different, discussion of “pro-Artinian” completions. In particular, we
prove a derived version of Schlessinger’s criterion for the existence of formal versal deforma-
tion rings.

In §6.3 we give a proof of Grothendieck’s formal GAGA theorem in the derived context.
This is one instance in which the derived perspective offers a useful point of view: the fact
that the “formal analytification” functor is fully faithful on coherent sheaves is deduced
formally from the coherence theorem for proper direct images. The essential surjectivity
does not seem to follow formally; however, it is easily reduced to the classical formal GAGA
theorem.

In the last part of this section, §6.4, we prove that if X is a derived stack and A is
complete, local, and Noetherian, then the space of A-valued points of X may be described
as an inverse limit of spaces of A,-valued points of X, where A, ranges over a family of
Artinian “quotients” of A. The significance of this result is that, according to Theorem
7.1.6, it is one of the defining characteristics of derived stacks.

6.1 Completions

Let A € S8CR and let J C mpA be a finitely generated ideal. Choose a set of generators
{1, ...,Tm} for the ideal J. For each n, let A, = A®zjy,,...ym] 7, where each y; — 22" € mpA
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and y; — 0 € Z. We can naturally arrange an inverse system of A-algebras
. — A2 — Al — AO

We let A denote the corresponding object of Pro(8€R). The following proposition shows
that A depends only on the closed subset of the Zariski spectrum of mpA determined by J,
and not on J itself or the choice of generators:

Proposition 6.1.1. Let B € SCR. Then the map p : Hompsex) (fl, B) — Homgexr(A, B)

is (—1)-truncated and expresses Hompm(gem(fl, B) as the union of those components of
Homger(A, B) consisting of maps f : A — B for which f(J*) =0 € myB for some k >> 0.

Proof. Let f € Homgex(A, B) be any morphism. If f is in the essential image of p, then
clearly f(J¥) = 0 for k¥ >»> 0. Suppose that the latter equation holds, and let Z, denote
the space of factorizations of f through A,. We note that Z, is nonempty if and only if
f(z¥") = 0 for each 1 < 7 < m, which is the case for n >> 0. In this case, Z, is a torsor for
(2B)™, where (2B denotes the loop space of the underlying space of A. In particular, moZ,
is a (m, B)™ torsor and m;Z, is naturally isomorphic to (74, B)™ for ¢ > 0. By construction,
the map p : Z, — Zny1 induces a constant map on 7y and the zero map on m;y; for i > 0.
Consequently, the fiber of Hom(A, B) — Hom(A, B) over f is the direct limit of the spaces Z,
as n — 00, which is contractible (by Whitehead’s theorem, since the formation of homotopy

groups is compatible with filtered colimits). O

If A is the J-adic completion of some A € SCR, then we may consider QC ;, where we
identify A with the corresponding functor 8€R — 8. Equivalently, QC; is the inverse limit
of the co-categories QCgpec 4, = Ma,. An object of QC; may be represented by a family
{M,} of {A,} modules, equipped with equivalences M, ~ Mp; ®4,,, An. The utility of
formal geometry is that the category QCj; is closely related to M, particularly when A
is J-adically complete. In order to explicate the relationship, we need to introduce some
terminology.

Definition 6.1.2. Let A € 8€R and J C mA a finitely generated ideal. An A-module M
is said to be J-torsion if for each z € mM, J™x = 0 € M for m > 0. A module M is
J-acyclic if M ®4 A, = 0, and J-complete if Hom4 (N, M) = 0 whenever N is J-acyclic.

Remark 6.1.3. The notions introduced above are borrowed from the theory of Bousfield
localization in homotopy theory. They work especially well in this context because A4, is
perfect as an A-module.

Proposition 6.1.4. Let A € 8CR and J C moA be a finitely generated ideal.

1. The class of J-torsion (J-acyclic, J-complete) modules depend only on the radical of
J. Each constitutes a stable subcategory of the stable oo-category of A-modules.
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2. There exists an admissible t-structure (with trivial heart) on My, with (M4)so and
(Ma)<o given by the classes of J-acyclic and J-complete modules, respectively. In
particular, for any M € M, there exists a morphism M — M with J -complete target
M and J-acyclic kernel.

3. The restriction map v : QC4 — QCj s zero on J-acyclic modules, and induces an
equivalence of calegories between the stable co-category of J-complete A-modules and
the stable oo-category QC .

4. The completion functor M — M induces an equivalence of categories between the stable
oo-category of J-torsion modules and the stable co-category of J-complete modules.

Proof. Claim (1) is obvious for the class of J-torsion modules. For J-acyclic modules, we
note that M is J-acyclic if and only if M = 0, and A depends only on the radical of J.
Finally, the class of J-acyclic modules determines the class of J-complete modules, which
completes the proof of (1).

Let S denote the class of morphisms of A-modules which become equivalences after
applying 7. Since r commutes with all colimits, we can deduce that S is generated (as
a saturated class of morphisms) by a set, so that (2) follows from the general theory of
localizations: see for example [22].

Specifying a quasi-coherent complex M in QC is equivalent to giving a system of A,
modules M, together with equivalences M,i; ®4,,, An. In particular, we may view {M,}
as an inverse system of A-modules and form its inverse limit M. The functor

Mw— M

is right adjoint to r.

Since A, is finitely presented as an A-module, tensoring with A,, commutes with limits.
Thus M® 4 A, is given by the limit of the system { M, +®4A4,}. A simple computation shows
that the inverse system of homotopy groups {m;Mp i ®4 A,} is equivalent (as a pro-object)
to m;My,. It follows that the natural map

rM — M

is an equivalence. Thus the completion functor M — M identifies QC; with a full sub-
category of M,4. To complete the proof of (3), it suffices to show that the essential image
of the completion functor consists precisely of the J-complete modules. Since each M, is
J-complete as an A-module, the inverse limit M is necessarily J-complete. On the other

hand, suppose that M is any J-complete A-module. Then the natural map g : M —rM
induces an equivalence after applying r, so that the kernel of g is J-acyclic. Since both the
source and target of g are J-complete, the kernel of ¢ is J-complete. Consequently the kernel
of g is zero and g is an equivalence, so that M lies in the essential image of the conpletion
functor.
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In view of (3), Claim (4) is equivalent to the assertion that r induces an equivalence of
oco-categories from the oco-category of J-torsion A-modules to QC4. We first show that r is
fully faithful. One shows that the oo-category of J-torsion modules is the smallest stable
subcategory of M4 which contains every A, and is stable under the formation of sums. Since
r commutes with sums, it suffices to show that Homyr, (An, M) = Homyy, (rAn, M) for any
M € M,. The right hand side is given by the inverse limit of the spectra

HOI’IIMA’v (An R4 A, M ®4 Ak) = HOHIMA(A”, M®a Ak)

Since A, is a perfect A-module, this is simply the J-completion of M ® 4 A,. However, since
M ®4 A% is an A,-module, it is already J-complete as an A-module, so that the mapping
space in question is simply given by the Oth space of M ®,4 A}, which is Hom4 (An, M).

To complete the proof, it suffices to show that r is essentially surjective when restricted
to J-torsion modules. If not, then there exists a nonzero complex N € M, such that
Homy, (rM, N) = 0 whenever M is J-torsion. Let N = rN; then Homy, (M, N) =
whenever M is J-torsion. In particular, Hom(A}, N ) =A, R4 N = 0 for each n, so that
N=rN= 0, a contradiction. O

Remark 6.1.5. The equivalence of oo-categories provided by (4) of Proposition 6.1.4 is
somewhat mysterious from the classical point of view. It is certainly not the case that every
p-adically complete abelian group arises as the p-adic completion of a p-torsion group. For
example, to obtain the group Z, of p-adic integers, one must apply the left-derived functors
of the p-adic completion to the group Z[i] /Z.

We next study the condition of J-completeness more carefully.

Proposition 6.1.6. Let A € SCR, M € My, and let J C mA be a finitely generated ideal.
The following conditions are equivalent.

1. The module M is J-complete.
9. For each x € J, the module M is (x)-adically complete.

3. There ezists a set of generators {z1,...,Zn} for J such that M is (z;)-adically complete
for each i.

Proof If M is J-complete and N is (z)-acyclic for z € J, then N is J-acyclic so that
Hom(N, M) = 0; thus M is (z)-complete. This proves (1) = ( ). The implication (2) = (3)
is obvious.

Let {xi,...,Tn} be a system of generators for J. Suppose that M is (z;)-adically com-
plete for each i. We prove by induction on k that M is Ji = (x1,.. ., T )-adically complete.
This is vacuous for k = 0. For k > 0, we let A, denote the Ji- adlC completion of A (as an
object of Pro(S€R), and Agy1 the (z441)-adic completion of A; then AJ,c+1 = AJk ®a Ak—H
We wish to prove that M is Ji4i-adically complete, so that M is equivalent to the inverse
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limit of the pro-system M ®,4 AJ‘C+1 =M®, AJk ®a flkH. Since Ak+1 may be taken to consist
of perfect A-modules, tensoring with Ay, commutes with limits, so that by the inductive
hypothesis we deduce that the inverse limit of M ® 4 A 7, ®a Ak+1 is equivalent to the inverse
limit of M ®4 Agy1, which is equivalent to M since M is (z11)-adically complete. O

Proposition 6.1.7. Let A € SCR, J C moA a finitely generated ideal, and M an A-module.
The module M 1is J-complete if and only if each m;M is J-complete, when regarded as a
discrete A-module.

Proof. Using Proposition 6.1.6 we may reduce to the case where J is generated by a single
element . Suppose first that M is J-complete. Consider the long exact sequence associated
to the triangle

MES Mo M,

This gives rise to short exact sequences
0— mM/(z"t M) — m; M, — ker(m_1 M = i1 M) — 0.
Passing to the inverse limit, we deduce the existence of an exact sequence
0 — Um®{mM/(z"m, M)} — lm®{m;M,} — lim*{kerm;_; M = 7;_1 M} — 0
and an isomorphism
liml{vriMn} ~ lim* {ker m_; M % m;_1 M.

Let M denote the J-adic completion of M, so that there are exact sequences 0 — liml{m-+1Mn} —
M — lim®{m; M,} — 0.

Since M ~ M, the natural map m;M — limo{m—Mn} is surjective. Since this surjection
factors through Lim®{m;M/(z"m, M), we deduce that lim*{ker m;_ M = m,_ M } =0s0 we
have an exact sequence

0 — lim'{ker ;M 5 mM} - mM — Iim®{m;M/z" .M} — 0.

The results of this calculation are unchanged if we replace M by m; M, from which we may
deduce that m; M is J-complete.

For the converse, suppose that each m;M is J-complete. Using the above calculations,
one shows that the ith homotopy group of the J-adic completion of M depends only on m;M
and m;—; M. Thus, to show that m;M ~ mM, we may suppose that M is i-truncated and
(¢ — 2)-connected. Then M is an extension of J-complete modules, hence J-complete. [

We note that there is a good theory of completions of Noetherian derived rings:
Proposition 6.1.8. Let A € SCR be Noetherian, and let J C moA be an ideal. The tauto-
logical morphism ¢ : A — lim A s flat, and molim A is the J-adic completion of mpA. In
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particular, ¢ is an equivalence if and only if moA is J -complete (in the usual sense), in which
case we shall say that A is J-complete.

Proof. Using induction on the number of generators of .J , We may reduce to the case where
J is generated by a single element z € myA. Let i 2 0. There exists a map of inverse systems
of (discrete) myA-modules

¢ . WiA/(.'Eznﬂ'i.A)'—-) 7T7;(An).

Since A is Noetherian, m4 is a finitely generated module over the Noetherian ring myA. By
the classical theory ¢ of completions of Noetherian rings, the inverse limit of this system is
given by mA &y 4 moA, where A is the J-adic completion of mpA. Moreover, 7?(’)?1 is a flat
mpA-module and all lim'-terms vanish. To complete the proof, it suffices to show that ¢ is
an equivalence of pro-groups.

There exists a long exact sequence

2’1
T
.—>7TiA—-+7TiA—f7TiAn—-+7T,'_1A——>....

From this, we see that ¢ is a monomorphism of proabelian groups with cokernel given by

1'2 . . . .
the pro-system {kerm;_yA = m,_;A}. Each morphism in this pro-system is zero, so the
corresponding proabelian group is trivial. O

Remark 6.1.9. If A ¢ $8C€R is Noetherian and J-complete for some J C myA, then any
coherent A-module M is J-complete. By Proposition 6.1.7, it suffices to prove this in the
case where M is discrete, and by Proposition 6.1.6 we may suppose that J = (z). Then

M = lim{coker M oM }. Consequently, we obtain the isomorphisms
M ~ lm® {ker moM ToM},

7T_1M ~ liml{']ToM/(mnﬂ'oM)},

and an exact sequence
0 — lim'{ker ;oM = oM} — moM — Lim® {mo M/ (z™)meM} — 0

(and ail other homotopy groups vanish). The first lim!-term vanishes because all the maps
in the system are surjective. Since moM is a Noetherian moA-module, the kernel of 2 on
of M is constant for large M so that the inverse system of abelian groups {ker oM = 1M }
is pro-trivial. We therefore deduce that M is discrete and moM is the inverse limit of the
abelian groups moM/(z"meM), which is the classical J-adic completion of M; the desired
result now follows from classical commutative algebra.

Remark 6.1.10. One can model objects of SCR using topological commutative rings. In this
case, the topology is merely a formal mechanism for discussing paths, homotopies of paths,
and so forth. These topologies have nothing to do with the p-adic topologies on commutative
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rings (which are totally disconnected and have no nontrivial paths or homotopies), which
play an important role in commutative algebra. The presence of “topology” in both aspects
has the potential to be very confusing, so we shall try to avoid topological terminology in
discussing pro-rings such as A.

6.2 Pro-Artinian Completions

We shall say that an object A € SCR is Artinian if meA is an Artinian ring, each mA is a
finite moA module, and mA = 0 for 7 > 0. Every Artinian object of SCR may be written
(uniquely) as a finite product of local Artinian derived rings. In this section we will be
exclusively concerned with the local case. If A € SCR is local and Artinian, then its residue
field is defined to be the residue field of myA.

Let k be a field. We shall denote by €, the oco-category whose objects are local Artinian
A € 8CR, together with an identification of k£ with the residue field of A. We may view G
as a full subcategory of 8€R ;. A map in €y is said to be surjective if it induces a surjection
on .

We now define the analogue of cohesive functors in the Artinian context. For simplicity,
we shall restrict our attention to the case where F(k) is contractible. This involves no

essential loss of generality, since a general functor F can be understood in terms of F(k) and
the fiber of F over each point of F(k).

Definition 6.2.1. Let k be a field. A functor F : €, — 8 is formally cohesive if it satisfies
the following conditions:

e The space F(k) is contractible.

e If A— C and B — C are surjective, then F(A x¢ B) — F(A) x5y F(B) is an

equivalence.

In other words, a functor F : €, — 8 is formally cohesive if it commutes with most finite
limits. We will see in a moment that this implies that F commutes with even more finite
limits: in a sense, all finite limits which Cx ought to have. In order to prove this, we need to
investigate the deformation theory of F.

Lemma 6.2.2. The functor V — F(k®V), which is defined on perfect connective k-modules
V', has a unigue left exact extension to perfect k-modules.

Proof. Define (2(V) to be the nth loop space of F(k @ V[n]) for n > 0. Since F is good,
F(k@V') is the loop space of F(k@V/[1]) whenever V is connective. Thus (V) is independent
of the choice of n, so long as V[n| is connective. If M is already connective, we may take
n = 0, so we see that () extends the functor V — F(k ® V). It is clear by construction that
(! is the unique extension which commutes with the formation of loop spaces. To complete
the proof, it suffices to show that Q commutes with all finite limits. Clearly 2 preserves final
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objects, so we need only show that Q(V’' xy V) — Q(V') xqu (V). This follows from
the equivalence

F(k® (V' xy V'[n])) = Flk @ V'[n]) xspevin) Flk @ V'[n])
for n sufficiently large. O

Proposition 2.5.5 implies that the functor V' — Q(V') is given by the Oth space of V @ T,
for some uniquely determined k-module T3.We call T+ the tangent complez to F. We note
that T is covariantly functorial in F. Its underlying spectrum may be described as follows:
the nth space of T¥ is given by F(k @ k[n]). More concretely, the homotopy groups of T are
given by the formula m;T5 ~ 7, ; F(k @ k[j]), valid for all j > —.

Example 6.2.3. Let F,(A) = Homg, (k, A). Then 7, is a good functor (it is the initial object
in the oco-category of good functors €, — §). Its tangent complex T, = T, has homotopy
groups which are zero in dimensions # 0. The k-vector space 7T, may be identified with
the vector space of all derivations (over the prime field) from k into itself.

Remark 6.2.4. Let D denote the oo-category of formally cohesive functors €, — S. An
object of D may be thought of as a “formal neighborhood” of a k-valued point. of some
moduli space. Let D, = D, #,; we may think of objects of D, as “formal neighborhoods” of
k-valued points on moduli spaces defined over k.

Remark 6.2.5. When k is a field of characteristic zero, the D, is the underlying oco-category
of the Quillen model category differential graded Lie algebras over k. If L is such a differential
graded Lie algebra representing a functor & € D,, then the underlying differential graded
vector space of L is a model for the kernel of T, — T5.

Lemma 6.2.6. Let f : A — B be a surjective morphism in C, which induces a surjection
on mg. Then there exists a factorization A = B, — B,_1 — ... = By = B, where each
Bi.1 — B; is a small extension with kernel k[j] for some j.

Proof. Let K be the cokernel of f, and let ng = ", {(mK), where I(m;K) denotes the
length of m; K as an Artinian module over the Artinian ring 7oA. We prove Lemma 6.2.6 by
induction on ng. If ng = 0, f is an equivalence and there is nothing to prove. If np > 0,
then there exists some smallest value of ¢ such that 7;K # 0. Since f is surjective, i > 0.
Thus

Torjo4(mo B, mK) = (K ®a B) = m;Lp/a,

and m;Lg/a = 0for j < i. Since m; K is nonzero, the group on the left is nonzero and therefore
has a quotient which is length 1 (as a mpA-module). Consequently, we may construct a
morphism of B-modules Lg/4 — k[i]; let By denote the corresponding small extension of B
over A. It is easy to see that ng, = ng — 1, so that the inductive hypothesis implies the
existence of a sequence of small extensions A = B, — B,_; — ... — B;. Appending the
small extension B; — B we deduce the statement of the lemma. O
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Lemma 6.2.7. Let F: G, — § be a formally cohesive functor. If f:A— C andg :B — C
are morphisms of Cy, then F(A x¢ B) = F(A) x5 F(B) is an equivalence provided that
either f or g is surjective.

Proof. Without loss of generality we may suppose that f is surjective. Using Lemma 6.2.6,
we may reduce to the case where f is a small extension by k[j] for some j > 0. It suffices to
treat the universal case where f : k — k ® k[j + 1] is the zero section. In this case, g is also
surjective, and the result follows. O

Proposition 6.2.8. Let ¥ — F be a transformation of formally cohesive functors C, — §.
The followring conditions are equivalent:

¢ The map Ty — Ty is 0-connected.

e For any surjection A — A’ in €y, the induced map F(A) — F(A') Xg1an F(A) is
surjective. '

Proof. Since any surjection is a composition of small extensions by shifts of &, (2) is equivalent
to assertion that the corresponding statement holds for the universal such small extension,
given by the zero section k — k @ k[j + 1]. In other words, (2) is equivalent to the assertion
that the fiber of the map on zeroth spaces induced by T5[j + 1] — Ty[j + 1] is connected,
for all j > 0. Clearly, this is equivalent to the assertion that Ty — Ty is O-connected. [

We shall say that a transformation p : F — F of formally cohesive functors is formally
smooth if it satisfies the equivalent conditions of Proposition 6.2.8.

Remark 6.2.9. The proof of Proposition 6.2.8 also shows that p is an equivalence if and
only if it induces an equivalence Ty — To.

Let A € 8CR. If A is local and Noetherian, then we will say that A is complete if it is
m-complete, where m C wgA is the maximal ideal.

Proposition 6.2.10. For each R € SCRy, let Fr: C — 8 be defined by
Fr(A) = Homsegz/k(R, A).
1. For any R € 8CRy, the functor Fg is formally cohesive.
2. If R € 8CR i, then Ts, is the dual of the k-module Ly ®g k.

3. If R € 8CR ;. is complete, local, and Noetherian with residue field k, then Homgeg (U, R) =
Homge, (Fr, Fr) for any R’ € SCRyy.
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Proof. Claims (1) and (2) are obvious. To prove (3), we let m denote the maximal ideal
of myR, and let the m-adic completion of R be represented by the pro-system {R,}i>o of
finitely presented R-algebras. Let R denote the pro-ring represented by the inverse system
{7<jRi}ij>0- We remark that R is not equal to the m-adic completion of R as pro-objects
in general (although they have the same inverse limit). The pro-object R may be thought
of as a pro-system in C, and Homsex,, (1, A) = Hom(R, A) for any A € €. Consequently,

R € Pro G corepresents the functor Fr. Thus Homge, (Frr, Fr) = Homsex, (R', lim R) =
Homsex (R', R), where the last equality follows from the fact that R is complete. O

Remark 6.2.11. Let R € SCR be local and Noetherian with maximal ideal m C mpR, let
R = {R,} denote its m-completion (as an object in Pro(8€R)), and R" = {r<pRa} its
pro-Artinian completion (also as an object in Pro(S€R)). There is a natural map R' — R’
in Pro(S€R) which induces an equivalence after passing to the inverse limit: this follows
from the fact that any object A € S€R is given by the inverse limit of the tower {r<mA}.
The map ¢ : R’ — R" need not an equivalence in Pro(8€R). However, ¢ is an equivalence
whenever R is k-truncated: in this case, the construction of {R,} given in §6.1 shows that
we may take each R, to be (k + k’)-truncated, where k' is the number of generators of m.
Consequently, the tower {7<m Ry }ms>o is Pro-equivalent to R, for each fixed n.

Our next goal is to prove Theorem 6.2.13, which characterizes the good functors having
the form Fg for complete Noetherian R € SCR with residue field k. Before we can prove
this result, we need a simple lemma from classical commutative algebra. We include a proof
for lack of a reference:

Lemma 6.2.12. 1. Let
.= R2 — R]_ — RO

be an inverse system of (ordinary) local Artinian rings with the same residue field k.
Denote the mazimal ideal of R; by m;, and suppose that the induced maps miyy/mf ; —
m;/m? on Zariski cotangent spaces are all injective. Then the inverse limit R =
lim®{R;} is Noetherian.

2. Suppose that R is a complete local Noetherian ring and that
.= My — My — M,

is an inverse system of finitely generated R-modules. Let m be the mazimal ideal of
R, and suppose that each map Miy1/mM; 11 — M;/mM,; is injective. Then the inverse
limit M = Wim®{M;} is o finitely generated R-module.

" Proof. We first prove (1). Passing to a subsequence if necessary, we may suppose that the
sequence of Zariski cotangent spaces {m;/mZ} is constant, and consequently all of the maps
R;.1 — R; are surjective. Choose a map A — R where A is Noetherian and A — k is
surjective. If k has characteristic zero, we may arrange that A ~ k; in characteristic p we
may take A to be the Witt vectors of k. Choose a finite collection of elements {w:} C Ro
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which generate mg/m?, and lift them to elements {#;} € R. There is a unique continuous

ring homomorphism A[[z1,...,Z,]] — R which carries each z; into %;. One checks that
this homomorphism is surjective. Since A[[zy,...,%,]} is Noetherian, the quotient R is
Noetherian.

To prove (2), we again begin by passing to a subsequence so that the inverse system
of vector spaces {M;/mM,} is constant. By Nakayama’s lemma, we see that each map

M1 — M, is surjective. Consequently, we may choose a finite collection {z1,...,z,} C M
whose images form a basis for My/mMj. Using the fact that R is complete, one shows that
the sequence {z1,...,x,} generates M. O

To simplify the statement and proof of the next theorem, we introduce a notation for
relative tangent complezes. Given a transformation ¥ — ¥ of good functors, we define Ty /7
to be the kernel of Ty — T3. If F7 = Fg for some R' € 8€R,, then we will abbreviate by
simply writing Tr, #; similarly if 7 = g then we shall denote the tangent complex simply
by Trr/r. We note that Tp/z ~ Homy,, (Lr/g, k).

We now come to the main result of this section: the derived version of Schlessinger’s
criterion. This gives precise conditions under which a functor €; — 8 is representable by
a complete local Noetherian R € SCR having residue field k. This is the “infinitesimal®
ingredient in the proof of our main result, the derived version of Artin's representability
theorem. Strictly speaking, we do not need Theorem 6.2.13 in the proof of Theorem 7.1.6:
the classical version of Schlessinger’s criterion will be sufficient for our purposes. However,
the derived formulation of this result is interesting enough in its own right:

Theorem 6.2.13 (Derived Schlessinger Criterion). Let F be a good functor €, — .
The following conditions are equivalent:

1. There erists a complete local Noetherian R € 8CR, having residue field k, and a
smooth transformation Fp — F.

2. The k-vector spaces wIy, s are finite dimensional for i < 0.

Proof. If F — ¥ is smooth and ¥ satisfies (2), then so does F. It is clear that (2) is satisfied
when ¥ = Fpg, where R is local, Noetherian, and has residue field k. Thus (1) implies (2).

The hard part is to show that (2) implies (1). We will construct a sequence of complete
local Noetherian objects R* € SCR, such that R* = 7;R™!, and a compatible family of
transformations ¢' : Fp: — F such that m,Tgi/5 = 0 for 0 < n < (~4 — 1). Assuming that
this is possible, we set R = lim{R'}. Then Fp = colim{Fz:}, so that the compatible family
of transformations ¢* gives rise to a smooth transformation ¢ : R — 7F as desired.

The construction proceeds by induction on 7. Let us begin with the case i = 0. We give an
argument which is essentially identical to the proof of the main theorem of [30]. We construct
the ordinary Noetherian ring R° as the inverse limit of a sequence of local Artinian algebras
RO equipped with maps ¢° F Ry = F, which we may identify with elements of 9'(R°) We

begln by setting R) = k, and QSO = x € F(k).
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Assuming that R0 and qbo have already been constructed, let V' denote the k-vector space
which is given by ‘Tl'_lTRo s3- Choose a point 7 in the Oth space of T R/ F Ok V*[1] in the

connected component classﬂymg the canonical element of V ®, V* (if the homotopy groups
of Ty vanish in positive degrees, then 7 is essentially unique so that the construction is
functorial; otherwise we must make an arbitrary choice). Then 7 classifies a morphism
R} — RY@®V*[1] over F. Let R}, , denote the corresponding square-zero extension of R 6

V* Slnce F is a good functor, we get a natural map qu 1T RO,, ~ F which extends ¢;.
Next we claim that the projection R‘JJ = R?- induces an surJectlon on Zariski tangent
spaces for j > 1. To see this, consider the exact sequence

! f 9
m1Thyre = 1 Tyme,, = T-1TRo/mo,, = T-2Tk/m0

£ g
W—lTk/R? -— W—lTk:/? — ﬂ—lTR?/S'" —_ W—ZTk/R?'

The surjectivity of f is equivalent to the injectivity of g. Since we have w_ 1TR0 IR,
7r_1TRo / by construction, it suffices to show that ¢’ is injective, which is equlvalent to
the surjectmty of f'. In order to show that f’ is surjective, it suffices to show that the
composition

W—lTk/Rcl' — W—lTk/R? L 7T_1Tk/5-'

is a surjection. But this composite map is an isomorphism by construction.
Now we may apply Lemma 6.2.12 to conclude that the inverse limit R° of the sequence

_—»Rg—+R(1]—)R8

is Noetherian. Moreover, the functor Fro is the filtered colimit of the functors ER?, so that
we get a natural map ¢° : Fro — F. Moreover, the relative tangent complex Tgo, 7 is the
filtered colimit of the relative tangent complexes TR? ;3. By construction, the natural map
7r_1TRo JF 7T_1TR0 /T is zero for all 7, so that the filtered colimit in question is trivial and
the construction of R0 is complete.

The construction of R*! for ¢ > 0 is similar. Namely, we first construct a sequence of
R;*' together with maps ¢’+ : R,+1 — F. We begin by setting R5™! = R! and ¢jt! = ¢*.
For each 7 > 0, we let V denote the k-vector space m—_;— QTR1+1 /) and we choose a point n
in the Oth space of TR; /5 @k V*[i + 2] lying in the connected component of idy € V &, V*.
As above, the element 7 classifies a morphism Ri*' — Ri*' @ V™[i + 2] over F, and we take
R} to be the corresponding square-zero extensmn of R""1 by V*[i + 1]. By construction,
this comes equipped with a canonical lifting qﬁ?ﬂ of (15’“

Let M, denote the R° module 7r1+1R*+1. By construction, My = 0, and Mj;; is an
extensmn of M; by a finite dimensional k vector space. One next shows that M;/mM; —

M;_1/mM;_, is injective for j > 2, where m denotes the maximal ideal of RO Lemma
6.2.12 now applies to show that M = Lim{M;} is a finitely generated R’ module (and
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discrete; the relevant lim'-term vanishes since each map M, — M; is surjective). Now set
Rt = hm{RH'l} It is clear that R**! is (i+1)-truncated, 7<; Rt ~ R*, and w1 R = M
so that R**' is Noetherian. Moreover, Fpi+1 is the filtered colimit of the functors STRM S0

the compatible family oy +1 gives rise to map ¢! : Frin — F which lifts ¢ Moreover,
Tri+1;5 is the filtered cohrmt of the complexes TR1+1 ;5 We have m,Tgin 5= 0for 0 <
J‘

n < (—1 — 1), and the transition maps for the direct system {m_s_ ITRm , 7} are all equal

to zero by construction, so that the direct limit vanishes. This completes the proof of the
theorem. O

In the case where 7T}, = 0 for ¢ > 0, we can be more precise:

Corollary 6.2.14. Let J be a good functor C, — 8. The following conditions are equivalent:

1. There ezists a complete local Noetherian R € SCR . with residue field k and an equiv-
alence Fp ~ F.

2. The vector spaces Ty are finite dimensional for © < 0 and vanish for i > 0.

Proof. It is clear that (1) implies (2). For the reverse implication, we apply Theorem 6.2.13
to deduce the existence of a smooth morphism of good functors 35 — ¥, where R €
SCR/, is complete, local, and Noetherian with residue field k. Let K denote the kernel
of the map of k-vector spaces moTy, — moTs. Since 7T, injects into meTs, K does not
intersect moT, C myTy,. Consequently, K is a finite dimensional vector space, and we have
a surjective map mo(Lr/z ®r k) — K* @ mo(Lyjz). It follows that there is a surjection
mLi/r — K*. On the other hand, mLy/g = m/m? where m denotes the maximal ideal of
mofl. Consequently, we may choose a finite sequence {zi,...,z,} € m which maps to a
basis for K*. Let R’ € SCR/, be the R-algebra R ®z[z1,...zm] &, Obtained by killing the z;.
Then the composite T — Fr — F induces an equivalence on tangent complexes and is
therefore an equivalence. 0

Remark 6.2.15. Alternatively, one can observe that Corollary 6.2.14 follows from the proof
of Theorem 6.2.13, rather than its conclusion.

6.3 Formal GAGA

Let A € S8CR be Noetherian and let 4 denote its J-adic completion, for some ideal J C myA.
We will let Spf A denote the functor SR — § represented by the pro-object A. We could
instead define Spf A as an oo- topos equipped with a certain Pro(SCR)-valued sheaf as part of
a more general theory of formal derived schemes, but this seems to be more trouble than it is
worth; we will only need to discuss formal derived schemes which are “of finite presentation”

over affine models having the form Spf A, and these can be described in terms of relative
derived schemes X — Spf A.
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The point of this section is to deduce a version of Grothendieck’s formal GAGA theorem.
The classical version of Grothendieck’s theorem asserts that if A is a Noetherian ring which
is complete with respect to an ideal J, and X is a scheme proper over Spec A, then the
category of coherent sheaves on X is equivalent to the category of coherent sheaves on the
formal scheme X which is obtained by formal completion along the ideal J. We will prove
a similar result in the derived setting. Let us begin by considering an arbitrary Noetherian
A € 8CR, and an arbitrary derived scheme X = (X, O) over Spec A. For any U € X, we let
Xy denote the derived scheme ('JC w0 |U). If J C mpA is an ideal, we let X denote the fiber
product X X Spec A SpfA and Xy = Xy X Spec A Spf A. We note that if Xy ~ Spec B, then
Xy ~ Spf B, where the completion is taken with respect to the J (moB)-adic topology. In
particular, we note that quasi-coherent complexes on Xy may be identified with J-complete
B-modules. Passing from local to global, we may identify quasi-coherent complexes M on X
with functors associating a J-complete B-module M (7) to each étale map 7 : Spec B — U.

The functoriality takes the form of functorial equivalences M(n') = M (We:; C whenever C
is an étale B-algebra (and n’ the induced map SpecC — X). In particular, we may endow
QCx with a t-structure, given by patching together the natural t-structures on QCg; s € Mp
for all étale maps Spec B — X. We may also speak of coherent objects of QCx, which are
given by those complexes which are locally given by coherent modules over the completion
lim B.

Theorem 6.3.1. Let A € S€R be Noetherian and J-complete for some ideal J C mgA. Let
X be a derived scheme which is proper over Spec A, and let X = X Xgpec o Spf A. Then the

restriction induces an equivalence between the oco-categories of coherent complezes on X and
X.

Proof. We first show that the restriction functor is fully faithful. Let M, N € QCy be
coherent; we wish to show that Homqc, (M, N) — Homgc, (M |X, N|X) is an equivalence.
Both sides are compatible with colimits in M, so we may reduce to the case where M is
almost perfect.

Now N ~ lim{7<,N} and N|X = lim{(r<,N)|X}, where the second equivalence fol-
lows from the fact that Spf A may be represented by an inverse system of A-algebras with
uniformly bounded Tor-amplitude over A. Using these equivalences, we may reduce to the
case where N is truncated. Now we may form a mapping complex K = Hom(M, N), which
is compatible with base change; Homgqc, (M, N) is given by the global sections of K, and
Homqc, (M | X, N|X) is given by the global sections of K 1X.

Let A be the inverse limit of almost perfect A-algebras {A,}, let X, = X Xgpec 4 Spec An,
and let p, : X, — Spec A,, be the projection. We wish to show that p. K ~ lim{(p,).K|X.}.
Since K is truncated, the push-pull formula gives (p,).(K|X,) =~ (p.K) ®4 An; thus it
suffices to show that p,K is J-complete. This follows from the coherence of p, K, since A is
J-complete.

For the essential surjectivity, let us consider any coherent M € QCx. We wish to show
that M is formal completion of some coherent My € QC,. By passing to direct limits, we
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can reduce to the case where M is almost perfect. Passing to inverse limits, we may suppose
that M is truncated. Working by induction on the number of nonzero homotopy sheaves,
we may reduce to the case where M is discrete. We are thereby reduced to the case of an
coherent sheaf on a proper formal Deligne-Mumford stack, which is handled in [20]. O

6.4 A Comparison Theorem

One of the usual applications of Grothendieck’s formal GAGA theorem is the following: if A
is a J-complete Noetherian ring, Y is a scheme which is proper over Spec A, and X isa scheme
which is separated (and finite type) over Spec A, then Homgpec a(Y, X) ~ Homgps A(Y’,X )
where X and Y denote the formal completions of X and Y along J. We will prove a derived
version of this result in [23], under the assumption that X is a geometric stack (a class of
objects which includes all separated derived algebraic spaces).

The purpose of this section is to prove a slightly different (and generally less useful)
variant on this result, in which we allow X to be arbitrary but require that A be local,
J = m the maximal ideal of A, and ¥ = Spec A. In this situation, we have:

Theorem 6.4.1. The natural map X (A) — lim{X(A,)} is an equivalence.

In order to prove the Theorem, we must first give an equivalent formulation in slightly
fancier language. Let Y denote the underlying oo-topos of Spec A, and let Y, denote the
underlying oo-topos of Spec k, where k is the residue field of A. We note that Yy may also
be identified (canonically) with the underlying co-topos of Spec 4, for each n (here, and in
‘what follows, we let A, be defined as at the beginning of §6.1). Let 7 : Yy — Y denote the
geometric morphism induces by the quotient map A — k.

The restriction of X to the category of étale A,-algebras gives an object 5“,{( € Yo;
similarly, the restriction of X to étale A-algebras gives an object F* € X. There is a natural
map ¢ : ™ FX — lim{F*}. We will actually show:

Theorem 6.4.2. The map ¢ is an equivalence of objects of Y.

In order to relate Theorem 6.4.1 from Theorem 6.4.2, we need the following lemma whose
proof is left to the reader.

Lemma 6.4.3. Let k' be an étale k-algebra, and let A! denote the (essentially unique) étale
Ap-algebra with A, @4, k ~ k'. Let A" denote the inverse limit of the system {A!}. Then A’
is an élale A-algebra, and for any F € Y we have a natural equivalence F(A') =~ (7* F)(K).

Using Lemma 6.4.3, it is easy to see that Theorem 6.4.2 holds for A if and only if Theorem
6.4.1 holds for every finite étale A-algebra (which are precisely the algebras of the form A’
as in the statement of Lemma 6.4.3).

We can now give a proof of Theorems 6.4.2 and 6.4.1. For any derived stack X, let P
be the assertion that Theorem 6.4.2 holds for any complete local Noetherian 4 € SCR. We
wills how that all derived stacks have the property P by applying Principle 5.3.5. We must
check that conditions (1) through (3) of Principle 5.3.5 are satisfied:
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1. We must show that Theorem 6.4.2 holds when X = Spec B is affine. This is obvi-
ous from the formulation given in Theorem 6.4.1, since the completeness assumption
guarantees that 4 = lim{A4,}.

2. Suppose that we are given a submersion Uo — X and'that the theorem is known for
each Uy, where U, denotes the (k +1)-fold fiber power of Us over X. We note that ?go"
is the (k 4 1)st fiber power of F% over F%, and the assumption tells us that this is
naturally equivalent to 7* % which is the (k + 1)st fiber power of 7* F° over 7+ FX
This proves that n* F% — FX is (=1)-truncated. To complete the proof, it suffices
to show that F° — FX is surjective. Suppose that a section FX is given over some
étale k-algebra k&’ Passing to some cover of k' if necessary, we may suppose that the
corresponding map 7 : Spec A} — X factors through some map 7, : Spec Ay — U,
To complete the proof, it suffices to show that each extension of 7, : Spec A — X
t0 Mni1 @ Spec Al — X can be covered by an extension of T Spec Al — U, to
Tnt1 : Spec AL — U,. This follows immediately from the fact that U, is smooth over
X.

3. Assuming that Theorem 6.4.1 holds for a sequence of open subfunctors X o <..., we
must show that it holds for their union. It suffices to show that X (A) = colim{ X(,)(4)}
and that im{X (4,,)} = colim lim{X(n)(Am)}. The first claim is obvious (since Spec A
is compact), and the second follows from the compactness of Spec A, together with
the fact that the topology of Spec A, is independent of 7.

This completes the proof of Theorem 6.4.1.
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Chapter 7

The Representability Theorem

7.1 Review of Artin’s Theorem

Let F be a set-valued (covariant) functor defined on the category of commutative R-algebras,
where R is a fixed commutative ring. A basic question is whether or not F is representable
by some geometric object X — Spec R, in the sense that F(B) = Homgpe r{Spec B, X).
Of course, the answer to this question depends on what class of geometric objects we allow
ourselves to consider. Artin’s representability theorem (see [2]) asserts that we can take X to
be an algebraic space, provided that the ring R is sufficiently nice and the functor F satisfies
certain criteria. More generally, Artin allows F to be groupoid-valued, which case the class
of representing geometric objects must be enlarged to include algebraic stacks (see [2]).

This result is of both philosophical and practical interest. Since Artin’s criteria are
obviously necessary for the existence of a reasonable geometric representation of F, the
sufficiency gives evidence that the class of algebraic spaces (or, more generally, algebraic
stacks) is a good class of objects to consider. On the other hand, if we are given a functor F, it
is usually reasonably easy to check whether or not Artin’s criteria are satisfied. Consequently
Artin’s theorem can be used to build a great number of moduli spaces.

Before proceeding into greater detail, we recall the statement of Artin’s theorem:

Theorem 7.1.1 (Artin). Let R be an ezcellent Noetherian ring, and let F be functor from
(ordinary) R-algebras to groupoids. Then F is representable by an Artin stack which is locally
of finite presentation over R if and only if the following conditions are satisfied:

1. The functor F commutes with filtered colimits.
2. The functor J is a sheaf (of groupoids) for the étale topology.

3. If B is a complete local Noetherian R-algebra with mazimal ideal m, then the natural
map

F(B) — lim{F(B/m")}

is an equivalence.

161



4. The functor F admits an obstruction theory and a deformation theory, and satisfies
Schlessinger’s criteria for formal representability.

5. The diagonal map F — F Xspec r F is representable by an algebraic space.

Remark 7.1.2. The original formulation of Artin’s theorem (see [2]) had a more restrictive
hypothesis than excellence on the ring R. For a careful discussion of the removal of this
hypothesis, we refer the reader to [8].

Remark 7.1.3. In the original formulation of the representability theorem, condition (3)
was replaced by the apparently weaker assumption that the natural map have dense image
(with respect to the inverse limit topology on the target). The extra generality tends not
to be so useful in practice, since the stronger version of (3) is usually just as easy to verify.
More importantly, the density assumption is not so natural once we begin to consider moduli
functors which are valued in co-groupoids.

We refer the reader to [2] for the precise meaning of assumption (4). We merely remark
that the obstruction and deformation theory are additional data which are related to, but
not (uniquely) determined by, the functor F. The meaning of this additional data is much
better understood from the derived point of view: it has to do with extending the functor F
to a small class of nondiscrete R-algebras. In the derived setting, we will suppose that we are
given a functor ¥ which is defined on all of S€Rg,. In this case, the analogue of condition
(4) is that the functor F be infinitesimally cohesive and possess a cotangent complex over
R. This assumption is much more conceptually satisfying, since the cotangent complex of F
is uniquely determined by JF.

The main theorem of this paper is the derived analogue of Theorem 7.1.1. Our result
will give necessary and sufficient conditions for the representability of a §-valued functor on
8CRpg/, where R € 8€R. Our proof will require some technical hypotheses on R.

Definition 7.1.4. An object R € SCR is a derived G-ring if the following conditions are
satisfied:

e R is Noetherian.

e For each prime ideal p C 7o R, the pR,-adic completion of R, is a geometrically regular
R-algebra.

In other words, a derived G-ring is a Noetherian object R of SCR such that moR is a
G-ring in the usual sense (see [26]). Since the class of discrete G-rings is stable under the
formation of finitely presented ring extensions (by a theorem of Grothendieck: see [26]), we
deduce that the class of derived G-rings is stable under passage to almost finitely presented
extensions.

Remark 7.1.5. We could similarly define an object R € 8€R to be excellent if it is Noethe-
rian, and 7o R is an excellent ring in the usual sense (see [26]). Excellence is a more common
(and stronger) hypothesis than the condition of being a G-ring; however, we shall not need
this stronger condition.
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We are now in the position to state our theorem:

Theorem 7.1.6. Let R be a derwved G-ring. Let F : 8€Rry — 8 a functor. Then F is
representable by a derived n-stack which is almost of finite presentation over R if and only
if the following conditions are satisfied:

1. The functor F commutes with filtered colimits when restricted to k-truncated objects of
8CRg, for each k > 0.

2. The functor F is a sheaf for the étale topology.

Lo

Let B be a complete, discrete, local, Noetherian R-algebra, m C B the mazimal ideal.
Then the natural map F(B) — lim{F(B/m™)} is an equivalence.

The functor F has a cotangent complex.
The functor F is infinitesimally cohesive.

The functor F is nilcomplete.

=R, ;A

For any discrete commutative ring R, the space F(R) is n-truncated.

The proof of the “if” direction will be given in §7.3. The remainder of this section is
devoted to a discussion of conditions (1) through (7) of Theorem 7.1.6, their meaning, and
why they are satisfied when F is a derived stack which is almost of finite presentation over
R.

The necessity of condition (1) follows from Proposition 5.3.10. We note that condition
(1) of Theorem 7.1.6 is weaker than the obvious analogue of the corresponding assumption
in Theorem 7.1.1, which would require F to commute with all filtered colimits. The reason is
that there are natural examples of moduli spaces which are not locally of finite presentation,
to which we would like our theorem to apply. An example is the derived Hilbert scheme,
which is not locally of finite presentation at points which classify subvarieties of projective
space which are not local complete intersections. However, as we shall see, the derived
Hilbert scheme is almost of finite presentation everywhere, so we can establish its existence
using Theorem 7.1.6.

Condition (2) is of course satisfied by definition if F is any derived stack. Condition (3)
is the obvious analogue of the corresponding condition in Theorem 7.1.1. One might also
consider a derived analogue of the corresponding condition, using the derived formal geom-
etry of the last section. This alternative formulation turns out to be equivalent, assuming
that conditions (4) through (6) are satisfied:

Proposition 7.1.7. Let F: S€R — § be a nilcomplete, infinitesimally cohesive functor with
a cotangent complex, and let k > 0. The following conditions are equivalent:

e (3'x) Let B € S8CR be complete, local, and Noetherian, and let m C woB denote the
mazimal ideal. Let {B,} be a pro-system representing the m-adic completion of B.
Then the natural map F(7<xB) — Um{F(7<,Bn)} is an equivalence.
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e (3") Let B € SCR be complete, local, and Noetherian. Then the natural map F(B) —
Lm{F(B,)} 1s an equivalence, where the pro-system {B,} represents the pro-Artinian
completion of B.

e (3") Let B € 8CR be complete, local, and Noetherian, with mazimal ideal m C moB.
Let {B,} be a pro-system representing the m-adic completion of B. Then the natural
map F(B) — im{F(B,)} is an equivalence.

Proof. We first show that the conditions (3}) and (3},) are equivalent for all £,&" > 0. It
will suffice to treat the case where &’ = k+ 1. Let C = 7<xB, and C' = 7¢x41 B. Then C’ is
a square-zero extension of C by M[k + 1], for some discrete, finitely generated moB-module
M. We first prove that (3;) implies (3},,). For this, it suffices to show that for any point
n € F(C) ~ lim{F(r<xBp)}, the fibers F and F' of the natural maps F(C') — F(C) and
Um{F(T<r4+1Bn)} — Um{F(7<xB,)} over the point n are equivalent. We note that F' is
nonempty if and only if a certain obstruction in m, Homy, (L5/r(n), M) vanishes. Similarly,
the nontriviality of F' is equivalent to the vanishing of an element in 7, K, where K is the
m-adic completion of Homy, (Ls/r(n), M). Since B is complete and M is coherent, M is
m-adically complete so that Homy, (Ls/r(n), M) is complete.

_ In the event that both are nonempty, one notes that F is a torsor for the space Homu, (Lz/r(n), M[k+
1]), while F” is a torsor for the Oth space of the m-adic completion Homye, (L5/r(), M[k+1]).
Since this C-module is already complete, we deduce that F ~ F".

We now prove that (3},,) = (3}). Using the above argument, we again deduce that
F ~ F'. Thus, if F(C") ~ Uim{F(r<x+1B8)}, then the natural map p : F(C') — Um{F(7<cBn)}
is an inclusion of connected components, and it will suffice to show that p is surjective. For
this, we are free to replace B by C and thereby assume that B is k-truncated. Then F(C) =
F(C") = lim{F(r<x+1Bx)}, and it suffices to prove that the natural map lim{F(r<x+1B5)} —
lim{F (1<, Bn)} is an equivalence. The proof of this is similar to the argument given above:
since F is cohesive, the mapping fiber is controlled by the cotangent complex. We leave the
details to the reader.

If B is n-truncated, the conditions (3") and (3") are equivalent, since the m-adic com-
pletion of B is pro-equivalent to the pro-Artinian completion of B (see Remark 6.2.11).
Moreover, if the maximal ideal of B may be generated by m elements, then we may guaran-
tee that each B, appearing an inverse system which represents that m-adic completion of B
is (n + m)-truncated. Thus, (3") is also equivalent to (3}) for £ > n + m. By the first part
of the proof, we see that (3"”) is equivalent to (3}) for any & > 0.

The general case now follows from the fact that F is nilcomplete, using the equivalence
B ~ lim{r<,B}. . O

Condition (3) of Theorem 7.1.6 is identical with assertion (3;) of Proposition 7.1.7. The-
orem 6.4.1 establishes that the equivalent conditions of Proposition 7.1.7 are satisfied in the
case where F is a derived stack.

The necessity of condition (4) was established as Theorem 5.1.5. We have already re-
marked that conditions (4) and (5) are the natural analogue of Artin’s condition (4) on the
existence of obstruction and deformation theories for the functor F.
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Remark 7.1.8. If Ly /g exists, then condition (1) implies that Ly,r is almost perfect. To
prove this, it suffices to show that for any map Spec B — F, the functor Homy, (L5 /| Spec B, )
commutes with filtered colimits when restricted n-truncated objects of Mp. Since Ly is
almost connective, we can reduce to evaluating this functor on connective modules, in which
case the commutativity with filtered colimits follows from condition (1) and the definition
of the cotangent complex.

Conversely, if we assume that F satisfies (4) and (5) and that L/ is almost perfect, then
(1) is equivalent to the (@ priori weaker) assumption that F commutes with filtered colimits
when restricted to discrete R-algebras. The proof is analogous to that of Proposition 7.1.7.

The nilcompleteness in condition (6) of Theorem 7.1.6 has no parallel in Theorem 7.1.1;
the idea that an R-algebra B should be well-approximated by its truncations is unique to
the derived context. The necessity of this condition (together with condition (5)) has been
established in Proposition 5.4.5. Finally, we note that condition (7) is obviously necessary
for the representability of F by an n-stack.

One difference between Theorem 7.1.1 and Theorem 7.1.6 is that the latter requires no
hypothesis of relative representability for the functor F. Roughly speaking, this is because
all of the assumptions of 7.1.6 are sufficiently natural that they are preserved under passage
to finite limits. ' One can therefore repeat the argument for the representability theorem,
applied to the diagonal map F — F Xgpec g F rather than F — Spec R.

Let us now summarize the contents of this section. We will begin in §7.2 by proving the
derived analogue of Artin’s algebraization lemma. When combined with Theorem 6.2.13, we
will be able to deduce that any functor ¥ satisfying the hypotheses of Theorem 7.1.6 admits
a smooth covering by a derived scheme. If F were relatively representable, we would be able
to conclude the proof there. However, we will eliminate this assumption by iterating the
argument.

Finally, in §7.4, we show how condition (4), the most mysterious of the hypotheses of
Theorem 7.1.6, may be stated in more concrete terms. This leads to a reformulation of
Theorem 7.1.6, which we shall state in §7.5.

Remark 7.1.9. From Theorem 7.1.6 one can also deduce criteria for the functor F to be
representable by more specific sorts of geometric objects. For example, once we know that
J is representable by a derived stack, it is representable by a derived scheme if and only if
the cotangent complex Ly p is connective. This derived scheme is a derived algebraic space
if and only if F(A) is discrete for any discrete ring A. A derived stack F is locally of finite
presentation over Spec A if and only if it satisfies a stronger version of condition (1), in which
one considers arbitrary filtered colimits in SCR.

7.2 Algebraization of Versal Deformations

Throughout this section, we will suppose that R is a derived G-riﬁg and ¥ : SR — 8 is a
functor equipped with a natural transformation ¥ — Spec R.

165



Our goal is to represent F by a geometric object. As a first step towards doing so, we wish
to produce a formally smooth morphism Spec C — F for some R-algebra C. It will be hard
to get C right on the first try. Our first lemma asserts that, if we begin with a morphism
Spec Cy — T which is “almost” formally smooth (in the sense that part of the cotangent
complex L¢,; vanishes at some point), then we can modify Cy to obtain a morphism which
is formally smooth.

Lemma 7.2.1. Suppose that F satisfies conditions (1), (4), (5), and (6) of Theorem 7.1.6.
Let i : Spec Cy — F be o map, where Cy has residue field k at some prime ideal of myCo.
Suppose further that m1(Lcys 5 ®c, k) = 0. Then, possibly after shrinking Cy to some Zarisk:
neighborhood of Spec k, there ezists a factorization Spec Cy — Spec C — F, where 7¢oCp =~
7<0C' and Spec C — F 1is formally smooth. Furthermore, if Cy is Noetherian, then each mC
is a finitely generated Cy module. Thus, if Cy is almost of finite presentation over R, then
so is C.

Proof. We first note that conditions (1) and (4) imply that L, s exists and is almost perfect,
so that we may choose an integer n < 0 such that m;Lg,, 7 = 0 for 7 <n.

We will construct the map Spec C — F as the limit of a sequence of maps SpecC; — F,
satisfying 7¢,C; = 7<;Ciy1. Moreover, we shall have

Ti(Le,y 5 ®c; k) =0

for0<j<i+ 1
Assume that C; has been constructed, and let M; = L¢,/5. The exact triangle

Le,5®c, Co = Ly — Legycy

and assumption that C; — Cp is an almost finitely presented surjection imply that M; is
almost perfect, and that m;M; = 0 for 7 < n.
The first step is to construct a triangle

K-,;—?Mi—>N,'

where K; is the dual of a connective, perfect complex and m;N; = 0 for j < i+ 1. In fact, we
will do this so that K; has a finite composition series by C;-modules having the form C;[j},
for n < § < 0. We give two constructions of this triangle. Our first construction works in
general, but requires us to localize Cy. Since we are only free to localize Cp finitely often,

we give a second construction which does not require localization, but which works only for
sufficiently large i. , _

Construction (1) : We first construct, for each j < 0, morphisms ¢} : K] — M; such that
the induced map on homotopy groups mm(K? ®c, k) — T (M; ®c, k) is an isomorphism for
m < j. The construction is by ascending induction on j, starting with 7 = n — 1, where
we may take K7 = 0. Supposing that K? and ¢ have already been constructed for j < 0,
let P = coker(qb’). Since P ®c, k is J- connected we may after localizing C; suppose that
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P itself is j-connected. It follows that mj.1(P ®c; k) = Torg°“ (m; 1 P, k), so that we may
choose a finite collection of elements of ;1P whose images form a basis for the k-vector
space m;11(P ®c, k). This collection of homotopy classes induces map Q[j] — P[—1], where
Q is a finitely generated free C;-module. Let K7 denote the cokernel of the composition
Q] — P[-1] — KJ'H. Since the induced map Q[j] — K7 — M; factors through the
composition P[—1] — KJ — M;, it is zero, so we get a factorlza.tlon of qb’ through some
oIt KT o M, havmg the desired property. Moreover, K7™ is an extension of Q[j + 1]
by K.

Now set K; = K?. By construction, K; is a successive extension of C;-modules of the
form C;[j] for n < j < 0. Let N; be the cokernel of ¢?. Then we have a long exact sequence

= Tm (K ®c, k) = Tm(M; @c, k) — mm(N; ¢, k) — mm_1(K; ®c, k).

By assumption, the homotopy groups m,(M; ®c, k) vanish for 0 < m < i+ 1, and are
therefore isomorphic to 7, (K; ®c, k) for all m < ¢ + 1. Consequently, we deduce that
Tm{N; ®c, k) = 0 for all m < i+ 1. Since N; is almost perfect, we may (after passing to a
localization) suppose that n,,V; vanishes for m < ¢+ 1.

Before giving the second construction of K;, we explain how to complete the construction
of Ci41 from C;. Consider the associated map Lg, 5 — N;. This map classifies a square-
zero extension of C; by N;[—1] which we shall denote by C;;;. By construction, C;,; comes
equipped with a map Spec C;y; — F. Since N;[—1] is i-connected, the morphism C;; — C; is
(i4+1)-connected, so the induced map 7<;C;+; — C; is an equivalence. Moreover, by Theorem
3.2.16, we have a natural (i + 3)-connected morphism N; ®¢,,, Ci — L¢,/c,,,- Composing
with the (2 + 3)-connected morphism N; — N; ®¢,,, Ci, we deduce that N; — L¢,/c,,, is
(i + 3)-connected.

Now we note that M;,, ®c,,, k is the kernel of the natural map M; ®@c, k — L¢,/c,,, ®c;
k. Moreover, the connectivity estimate above implies that the induced map on 7, is an
isomorphism for 0 < m < ¢+ 3 and a surjection for m = ¢ + 3. Consequently, we deduce
that m, M,y ®c,,, k vanishes for 0 < m < i+ 2, as desired.

Construction (2) : Assume ¢ > (1 — n). We suppose also that the triangle

Ki 1 — M,y — N,

has already been constructed. Our first goal is to construct a C;-module K}, together with
an equivalence K; ; ®¢, C;_1. For this, we make use of the fact that X;_; admits a filtration
by shifts of free modules. More precisely, we have

0=K!'—...> K, =K,

and each K J +11 is obtained as the cokernel of some map Q[j] — Kf ., Where @ is free. In
order to lift K7%! to a Ci-module K7 |, it suffices to lift K? | and to lift the corresponding
generators in 7rJK1 1- In other words, we need only know that the corresponding map
m;K] — m;K] is surjective. For this, we need only know that 7;(K] ®c, T) = 0, where T
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denotes the cokernel of C; — C;_;. Since K7 is (n — 1)-connected, this is possible whenever
T is (j — n)-connected: this follows from the inequality i > (1 —n).

Supposing that the C;-module K; has been constructed, we may interpret the C;_;-
module morphism K;_, — M;_; as a C;-module morphism f : K; — M;_;. Since M; — M;_;
is (1—1)-connected and K; is constructed out of cells having dimension < 0, the map f factors
through some f' : K; — M;; let N; denote the cokernel of f'. We wish to show that N; is
(4 + 1)-connected. It suffices to prove this after tensoring with C;_;. By the octahedral
axiom, we have a triangle

N;i®c, Cim1 — Ni1 — Le,_ /0,

As observed above, the natural map Ni_y — L¢,_,/c; is (i + 2)-connected, so that N; is
(i + 1)-connected as desired.

Now let C' denote the inverse limit of the increasingly connected tower {C;}. Since &
is nilcomplete, we may choose a map SpecC — F which compatibly factors each of the
maps SpecC; — F that we have constructed. It is easy to see that L5 is the dual of a
connective, perfect complex (in fact, it is the inverse limit of the tower {K;}, which we have
chosen compatibly for i > 0). O

The goal of this section is to prove the following result:

Lemma 7.2.2. If the functor F satisfies conditions (1) through (6) of Theorem 7.1.6, then
there ezists a formally smooth surjection U — F, where U is a derived scheme almost of
finite presentation over Spec R.

Proof. ' The construction of U is simple: we take U to be the disjoint union of Spec A, indexed
by all (equivalence classes of) formally smooth morphisms Spec A — & with source almost
of finite presentation over Spec R. The only nontrivial point is to verify that U — JF is
a surjection of étale sheaves. In fact, we will show more: that U — J is a surjection of
Nisnevich sheaves.

Consider any map Spec A — F. We must show that, locally on Spec A, this map factors
through U. Since U is formally smooth over F, we may (using Proposition 3.4.5) reduce to
the case where A is discrete. Using condition (1), we may suppose that A is almost of finite
presentation over R, and therefore Noetherian.

Choose any prime ideal p of A; we must show that there exists a factorization Spec A — U
in some neighborhood of p. Using condition (1) again, we may replace A by its Henselization
at p.

Let k denote the residue field of A, and ny € F(k) the associated element. Let € denote
the co-category of Artinian local objects of SCR having residue field identified with k as in
§6.2, and let Fy: C, — 8 denote the functor given by the fiber of F over 7q.

The map induced map R — k determines a formally cohesive functor ¥ on C; and
a natural transformation ¥, — Fg. It follows that F; is also a formally cohesive functor
and that the homotopy groups of T3, are finite dimensional k-vector spaces in each degree.
Theorem 6.2.13 now implies that there exists a complete Noetherian local R’ € S€R having
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residue field k and a formally smooth transformation Fp — Fy. (In the argument that
follows, we will only actually use the fact that mT%,,,5, = 0. Consequently, we could
replace R’ by mgR’', which could be produced using the classical version of Schlessinger’s
criterion.)

The natural transformation ¥y — Fg induces an R-algebra structure on R’ (compatible
with the R-algebra structure on k). Using conditions (3) and (5), we deduce that the
transformation Fp — F uniquely determines a point 9 € F(R') lifting no € F(k).

Using the formal versality of 7, we may construct a transformation f : R’ — A over k
together with an equivalence between the composite Spec A — Spec A — F and f*#. Let
us suppose known the existence of a factorization Spec R — Spec Ry — F, where Ry is
formally smooth over F and almost of finite presentation over B. By Popescu’s theorem,
we may write A as a filtered colimit of smooth A-algebras A, (equipped with distinguished
k-valued points). The composite map R, — R — A therefore factors through A, for
sufficiently large . Using condition (1), we may suppose (enlarging « if necessary) that the
maps Spec A, — Spec A — F and Spec A, — Spec Ry — F are homotopic. Since A, is
smooth over A and the closed fiber of Spec A, has a rational point over k, the assumption
that A is Henselian implies the existence of a section A, — A, which proves that the original
map Spec A — F factors through R;.

It remains to construct Rj (in other words, we have reduced ourselves to the case where
A = R’). This is the main point of the proof. The morphism Spec R’ — F is formally versal,
but R’ is not almost of finite presentation over R. We wish to find an approximation R} to
R' which is almost of finite presentation and still versal (that is, formally smooth) over .
This is usually done by algebraizing R': that is, choosing Ry such that R’ is the completion
of some localization of Rj,. We will give a simpler argument which tells us a little bit less: it
shows only that the completion of Ry is (infinitesimally) formally smooth over R'. However,
this will be enough to complete the proof, since it will imply that R, — F is formally smooth
at the point in question.

We begin by noting that & is finitely generated (as a field) over mgR. Consequently, we
can find a factorization R — B — R', where B = R|z,,...,Zn], and B has residue field k
at some point t C 7B lying over the maximal ideal of R’

Enlarging B if necessary, we may suppose that t/t? surjects onto the Zariski tangent space
of moR'. Let B denote the completion of B, at its maximal ideal, so that the induced map
f:B— Ris surjective. Consequently, the kernel K of f is an almost perfect B-module;
choose a surjection 3 : B" — K.

By Theorem 3.7.5, B is a filtered colimit of smooth B-algebras {B.}. Let K, denote
the kernel of the composite map B, — B — R'. Then K is the filtered colimit of {Ka.},
so that for sufficiently large a, the map g factors through some map E : Bl — K,. Let C

denote the B, ®S}L’“‘B B~ B denote the B, algebra obtained by killing the image of E We note
that the liftings 3 (as « varjes) form a filtered co-category, so that the algebras {Cg} form
a filtered system with colimit C = B ®Sym;.‘ gn B. We also note that by construction, the
{CE} come equipped with a compatible family of maps to R, whose colimit is the natural
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map C — R

By construction, C — R’ is l-connected. Let K’ denote the kernel of C[—1] — R/[-1].
We now repeat the above construction to further improve the connectivity. The C-module
K' is connective and almost perfect, so that there exists a surjection v : C™ — K'. Let
Ké- denote the kernel of C[—1]z — R'[-1]. Arguing as above, the collection of all choices
together with factorizations 7 : C'é” — K' form a filtered collection, giving rise to a filtered
system {D5} = {CE ®sym;jg il Cﬁ} having filtered colimit D equipped with a 2-connected

map D — R’

In particular, 7<; R’ is the filtered colimit of the system {7<;D5}. Consequently, condition
(1) implies that 7j|7<; R’ is the image of some element of F(7<; D5) for sufficiently large 7. To
simplify the notation, we shall henceforth write D' for D5, Dy for 7< D, and Dj for 71 D'.

Let M = Lp;/5 ®p, k. We claim that mM = 0. Granting this for the moment, let
us show how to finish the proof of the Lemma. Applying Lemma 7.2.1 to the morphism
Spec Dy — F, we deduce the existence of a factorization Spec Dfj — Spec D" — F, where
Spec D" is formally smooth over F, almost of finite presentation over R, and the associated
morphism D" — D} induces an isomorphism on 7y. By assumption, we have a factorization
Spec TR 2, Spec Dj — F. Applying Proposition 3.4.5, we conclude the proof.

It remains to prove that m; M = 0. To prove this, we make use of the exact triangle

M — Lp,y5®p, k — Lpy/py, ®p, k.

It suffices to prove that m1(Lp,; 5 @p, k) = 0 and ma(Lp,/p; ®p; k) = 0.
To show that m1(Lp,/5 ®p, k) = 0, we note that Dy ~ 7<; R', and use the exact triangle

LR'/S’@R’ k— LTSIR'/LT ®TSIR’ k — Lris’/R' ®TS1R’ k.

It now suffices to prove that 71(Lp/ 7 ®r k) = 0 and m (L., p/r ®r rr k) = 0. The first
part follows from the fact that Fp — Fp is formally smooth, and the second follows from
Theorem 3.2.16.

We now prove that my(Lp,/p, ®p, k) = 0. By Theorem 3.2.16, we have m1(Lp; p ®p;, k) =
0. Using the exact triangle

Lpy/pr ®py Do — Lpeypr — Lpg/py

we see that it suffices to prove that 7w2(Lpy/p ®p, k) = 0. Applying Theorem 3.2.16 again,
we deduce that m2(Lp,,p ®p, k) = 0. Using the exact triangle

Lp;p ®p Do — Lpyypr — Lpy/p

we may reduce to proving that ma(Lp;p ®p k) = 0.

Let q' denote the preimage of the maximal ideal of moR' in I, and let D' denote the
completion of the localization of D' at q’. Similarly, one may define B’ as a completion of
B,,. We note that D ~ B®z, D'. We note that Lp;p ®p k does not change if we replace L
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by its completion D). Consequently, we deduce that Lp,p ®@p k =~ LB/B' ®pk ~ LB/B., ®gk.
Now we use the exact triangle

Lpo/s @bk — Lgp®gk — Lgp, @p k.

We note that the middle term vanishes, so that the associated long exact sequence degener-
ates to give an isomorphism my(Lg 5 ®p k) ~ m(Lp, /8 ®p, k). This latter group vanishes
since B, is smooth over B. 0

Remark 7.2.3. The proof of Lemma 7.2.2 actually shows that I/ — F is a surjection for
the Nisnevich topology. It follows that if F is a functor satisfying (1) through (6), then we
may choose a hypercovering U, of F by Nisnevich derived schemes (this hypercovering has
geometric realization F if A has finite Krull dimension, by Theorem 4.4.5). Consequently,
if T : S€R — & is a sheaf for the Nisnevich topology, we may set T(F) = |T(U.)| to get a
reasonable definition of T for a large class of derived stacks. This seems to give a plausible
definition for the higher Chow groups of stacks, which compares well with other definitions
for quotients of quasi-projective varieties by linear algebraic group actions. We will discuss
this point in greater detail in [23].

7.3 Proof of the Representability Theorem

The goal of this section is to give the proof of Theorem 7.1.6. We remark that, if the functor
JF satisfies the hypotheses of Theorem 7.1.6 and ¥ — F Xspec A J 18 known to be a relative
stack which is almost of finite presentation, then the conclusion follows immediately from the
definition of a relative stack and Lemma 7.2.2. The reader who is satisfied with this slightly
weaker version of the representability theorem may skip this section, which is devoted to
removing the relative representability hypothesis.

Let A be a derived G-ring. Let us call a functor F € Shv(SCRT,) n-good if it satisfies the
hypotheses (1) through (7) of Theorem 7.1.6. We have already established that any derived
n-stack which is almost of finite presentation over Spec A is an n-good functor, and we wish
to prove the converse. We note that the class of n-good functors is stable under finite limits
(in the oo-category of functors over Spec A).

Suppose that F is an n-good functor. Then by Lemma 7.2.2 there exists a smooth
surjection of étale sheaves U — ¥, where U is disjoint union of affine derived schemes which
are almost of finite presentation over A. To complete the proof, it suffices to show that
U — T is a relative stack which is almost of finite presentation. In other words, we must
show that Spec B x5 U is a derived stack, almost of finite presentation over R, for any
morphism Spec B — JF. This assertion is local on Spec R, so we may assume the existence
of a factorization Spec R — U — F and thereby replace Spec R by U. Now we note that
U x5 U is another good functor. If n > 0, then U x4 U is (n — 1)-good. Consequently, we
may work by induction on n and reduce to the case where n = 0.

Since ¥ takes discrete values on ordinary commutative rings, the relative cotangent com-
blex Lz, 1s connective. In this situation, we shall prove the following refinement of 7.2.2:
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Lemma 7.3.1. Suppose that F is a good functor and that Ls,4 is connective. Then there
exists a formally étale surjection U — F, where U’ is a disjoint union of affine derived.
schemes which are almost of finite presentation over A.

Proof. We begin with the formally smooth surjection U — X provided by Lemma 7.2.2. We
then define U’ as in the proof of Theorem 5.1.12. Namely, we consider all instances of the
following data: étale morphisms Spec R — U together with m-tuples {ry,...,rm} C R
such that {dri,...,dr,} freely generate moLy/5(R). For each such tuple, we let R' denote
the R-algebra obtained by killing (lifts of) {r1,...,7m}. Let U’ denote the derived scheme
which is the disjoint union of Spec R/, taken over all R’ which are obtained in this way.

By construction, U’ is almost of finite presentation over A and 7 : U’ — J is formally
étale. To complete the proof, we need only show that 7 is surjective. The proof proceeds
along the lines of the proof of Theorem 5.1.12, except for the obstacle that we may not
assume that U’ — F is a relative derived scheme.

Choose any morphism Spec k — F, where k € SCR. We wish to show that, étale locally
on Spec k, this map factors through U’. Since U’ is formally étale over F, we may reduce to
the case where k is a discrete commutative ring. Since both F commutes with filtered colimits
when restricted to discrete objects, we may suppose that B is finitely generated as a discrete
moA-algebra. Consequently, k is almost of finite presentation over A, so that Spec k is a good
functor. It will suffice to show that the base chance 7’ : Spec k xU’ — Spec k is a surjection
of étale sheaves. Since Speck x5 U’ is a good functor, Lemma 7.2.2 implies the existence
~ of a formally smooth surjection V' — Speck x5 U’ where V is a derived scheme which is
almost of finite presentation over A. The composite map V — Speck is a formally smooth
morphism of derived schemes which are almost of finite presentation over R. Consequently,
V is smooth over Speck, so that the image of V' — Spec k is open in the Zariski topology of
Speck. To complete the proof, it will suffice to prove that this image contains every closed
point of Spec k. Replacing & by its residue field at such a point, we may suppose that (as
suggested by the notation) the commutative ring k is a field. We wish to show that, possibly
after making a separable extension of k, the map Spec k — F factors through U’.

Since U — T is surjective, we may (after making a separable extension of k) choose a
factorization Speck — Spec R — U — &, where Spec R is étale over U. The connectivity
of Ly implies that Ly — Ly, s is surjective. Localizing R if necessary, we may suppose
that there exist {z1,...,Zm} C woR whose differentials generate Ly s A choice of such
elements gives rise to a formally étale morphism Spec R — A%. Since Spec R x & Speck is
a good functor, Lemma 7.2.2 implies the existence of a formally smooth surjection W —
Spec R x5 Speck, where W is a derived scheme almost of finite presentation over A. The
composite map W — AT x5Speck = A} is a formally smooth morphism of derived schemes
which are almost of finite presentation over k, hence smooth. Consequently, the image of W
is a Zariski-open subset of A}". It follows that this image contains a point whose coordinates
are all separably algebraic over the prime field of k. Passing to a separable extension of &
if necessary, we may suppose that the coordinates of W all lie in a subfield k; € & such
that ko is a finite separable extension of the prime field of k. After passing to a separable
extension of k, we may lift this to a k-valued point of W. This gives us a new factorization
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Speck EN Spec R — U — F having the additional property that each f*z; € ky € k for each
of our coordinates z; € myR.

Let R’ denote the (Zariski) localization of R at the image point of f, and let m C woR'
denote the maximal ideal. To prove that Speck — F factors through U, it will suffice
to show that we choose {ry,...,7n} C m such that the differentials {dry,...,dr,} freely
generate 7oLy, #(R'). Since moLy,#(R’) is free over 7o R', Nakayama’s lemma implies that
this is equivalent to the surjectivity of the natural map m Ly = m/m? — moLy, (k) =
moLag ;5(k). Using the long exact sequence, we see that this is equivalent to the assertion
that the natural map moLagy 5(k) — moLi/5 is zero. Since Ly is connective, moLy/ 5 is a
quotient of moLy = fd,,. it therefore suffices to show that the differentials of each of the
coordinate functions {z1,...,%n} vanish in Ok, This is clear, since the coordinates take
their values in kg by construction. O

We are now prepared to give the proof of Theorem 7.1.6. Let F be a functor satisfying
the hypotheses of the theorem. As explained above, we may reduce to the case where F
is 0-good. Let us first treat the special case in which there exists a morphism F — X,
where X = (X, Ox) is a derived algebraic space which is almost of finite presentation over A,
having the property that F(B) — X (B) is an isomorphism (of sets) whenever B is discrete.
We wish to show that F is representable by a derived scheme. Using Lemma 7.3.1, we may
deduce the existence of a formally étale surjection U — F, where U = (U, Oy) is a derived
scheme almost of finite presentation over A. Then the induced map 7 : T<oU — T¢pX is
étale. The assertion that F is a derived scheme is local on X, so we may suppose that 7
admits a section s. It is easy to see that (X, s* Oy) is a derived scheme which represents the
functor JF.

We now treat the slightly more general case in which there exists a morphism ¥ — X
which induces an injective map of sets F(A) — X (A) for any discrete commutative ring A4,
where X is a derived algebraic space which is almost of finite presentation over A. Choose a
formally smooth surjection U — JF, where U is a derived algebraic space which is almost of
finite presentation over A. To show that JF is a derived stack, it suffices to show that U x5 U
is a derived stack. But U x4 U is a good functor and the map U x5 U — U xx U induces
an isomorphism of sets when evaluated on any discrete commutative ring, so we deduce the
desired result from the previous step.

Finally, let us consider the case where ¥ is a general 0-good functor. Choose again a -
formally smooth surjection U — &, where U is a derived algebraic space which is almost
of finite presentation over A. Once again, it will suffice to show that U x4 U is a derived
scheme. But the natural map U X3 U — U Xgpec 4 U induces an injection when evaluated
on discrete commutative rings, so we again reduce to the previous step. This concludes the
proof of Theorem 7.1.6.
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7.4 Existence of the Cotangent Complex

Let ¥ : SCR — & be a functor, and F — Spec R a natural transformation. Theorem 7.1.6
asserts that F is representable by a geometric object provided that certain natural conditions
are satisfied. Condition (4), the existence of a cotangent complex for ¥F, is perhaps the most
subtle of these. The purpose of this section is to show that, under suitable conditions, we
may reformulate condition (4) in more classical terms.

The idea is that if functor F is to have a cotangent complex L, then the relative cotangent
complex Lg /g will be almost perfect and we should be able to understand it in terms of its
dual Ty, = Homqg, (Ls/r, Oz). On the other hand, the dual should be easily characterized
using the definition of the cotangent complex: if n € F(C), then Tz g(n)[j] should be
essentially the same thing as the C-module F(CPHC|j]) — F(C) XHomsex(r,c) Homsex(R, CH
C[5]1). On the other hand, we can use this description to define T /g, without assuming that
Ly g exists at all.

For the remainder of this section, we shall make the following assumptions:

1. For any discrete commutative ring A, the space F(A) is n-truncated.
2. The functor JF is cohesive.

3. The functor JF is nilcomplete.

4. The functor F is a sheaf for the étale topology.

5. The functor F commutes with filtered colimits when restricted to 7<; 8CR, for each
k>0

6. R € 8CR is Noetherian and has a dualizing module.

Suppose that these assumptions are satisfied. Let C € SCR, let n € F(C), and let M be
a C-module. For j € Z, let S;(M) denote the mapping fiber of

F(C @ (1>0M[J])) = F(C) XHomgex(r,c) Homger(R, C @ (T50M[j])).

Moreover, we have natural maps ¢;(M) : S;(M) — QS;+1(M). Since F is cohesive, ¢;(M)
is an equivalence whenever M[j] is connective.

Since F is takes n-truncated values on ordinary commutative rings, one can show that
T>m{¥ S;(M) is independent of j for j > 0. We let S(M) denote the spectrum whose ith
space is given by the colimit colim¥S;,;(M). Finally, we set T;(n) = m,S(C). This is
a moC-module which we may think of as an ¢th component of the tangent space to F at
the point 1. In concrete terms, we have T;(n) = mymFpm for m > 0, —i, where Fy, is the
homotopy fiber of

G'(C &b C’[m]) — S'(C) X Homgex(R,C) Homgegg(R, Co C[m])
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We are now prepared to state the main result of this section, which was suggested to us
by Bertrand Toén.

Theorem 7.4.1. Suppose that F and R satisfy conditions (1) through (6) listed above. There
exists an almost perfect cotangent complex Ly g for F if and only if, for every discrete integral
domain C, and every n € F(C) which exhibits C as a finitely generated 7o R-algebra, each of
the tangent modules Tj(n) is finitely generated over C.

Proof. Suppose first that L/ g exists and is almost perfect. Then S;{M) = Homyw, (L /g, M[j])
and is therefore a coherent C-module. It follows that each homotopy group of 5;(M) is
finitely generated as a discrete C-module.

To prove the converse, we begin by showing that if C is truncated, n € F(C) exhibits C as
an R-module which is almost of finite presentation, then the functor M + S(M) satisfies the
hypotheses of Theorem 3.6.9. Conditions (1), (2), and (4) are easy to verify. For condition
(3), we may filter M and thereby reduce to the case where M ~ Cy = 7¢C/p, where p C moC
is a prime ideal. Then C® M =~ (Cy @ M) X, C. Using the fact that F is cohesive, we may
reduce to the case where C is a discrete integral domain, in which case the finite generation
follows from the hypothesis of the theorem.

Theorem 3.6.9 now implies the existence of an almost perfect C-module Lx,r(n) having
the appropriate mapping property. We next show that if p : C — C’ is almost of finite
presentation and C" is also truncated, then the natural map ¢, : Ly ;r(n)®cC’ — L3 /r(p.n)
is an equivalence. If p is surjective, then we simply use the universal mapping property
of Ly /r and the assumption that F is cohesive. In the general case, we may consider a
factorization C — C|z1,...,z,,] — C' where the second map is surjective, and thereby
reduce to the case where &' = C[zy,...,z,|. Working by induction on m, we may reduce
to the case where C' = C|z].

Suppose that 1, is not an equivalence, and let K, denote its kernel. Then K, is an almost
perfect Clz}-module, so there exists some smallest value of j such that ;K is nonzero.
Then 7; K, is a finitely generated module over moC|[z], whose formation is compatible with
surjective base change. The module 7;K, has nonzero localization at some maximal ideal
of moClz], which lies over some maximal ideal m of moC. Replacing C by 7oC/m, we may
suppose that C is a field k.

For any element a € k, the evaluation map e : k[z] — k which carries z into a is a
surjection, and induces the identity map k — k. Consequently, ¥, and .., are equivalences,
so that K, ®x;) k = 0. Consequently, the k[z]-module M = 7, K, does not have support at
any k-valued point of Spec k[z]. It follows that the support of M is zero-dimensional.

We note that the additive group of k (considered as a discrete group) acts on k[z] over
k. By naturality, it acts on the k[z]-module M and therefore stabilizes the support of
M. If k is an infinite field, this contradicts the fact that M has zero-dimensional support.
Consequently, k is finite and therefore perfect. Let k' denote the residue field of k[z] at
some point of the support of M. The natural map ¢ : k[z] — k' is surjective, so that
Ye is an equivalence. If we can show that .., is an equivalence, then it will follow that
Kp @k K’ = 0, a contradiction.
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To show that teop is an equivalence, we use the fact that F is an étale sheaf. Since
Speck’ — Speck is a surjection for the étale topology, it suffices to show that for any étale
k'-algebra A, the map 1), is an equivalence where g : A — A ®, k. But since &’ is a Galois
extension of k, ¢ is simply given by the diagonal embedding of A into a product of copies of
A, in which case the result is obvious.

We have now shown that there exists a cotangent complex Lz /g (n) at any point n € F(C)
such that C is truncated and almost of finite presentation over R, and that Ly, is compatible
with base change. Using the fact that F commutes with filtered colimits when restricted to
m-truncated objects, we may construct Ly p(C) whenever C is n-truncated, and using
the fact that F(C) = im{F(7<»C)} we may extend the definition to all C € SC€R. This
completes the proof. 0O

7.5 Reformulations of the Representability Theorem

Combining Theorem 7.1.6 with Theorem 7.4.1, we deduce the following version of the rep-
resentability criterion:

Theorem 7.5.1. Let F : SCR — § be a functor, and p : F — Spec R a natural transfor-
mation. Suppose that R is a Noetherian derived G-ring with a dualizing module. Then F is
representable by a derived n-stack which is almost of finite presentation over R if and only
if the following conditions are satisfied:

1. Finite Presentation: The functor F commutes with filtered colimits when restricted to
T<k OCR, for each k > 0.

9. Truncatedness: The space F(A) is n-truncated for any discrete commutative ring A.
3. Descent: The functor F is a sheaf with respect to the étale topology.

4. Cohesiveness: If A — C and B — C are surjective maps in SCR, then the natural
map F(A xg B) — F(A) xgcy) F(B) 1s an equivalence.

5. Nilcompleteness: For any A € 8CR, the natural map F(A) — Um{F(r<cA)} is an
equivalence.

6. Representability of Formal Deformations: If A is a (discrete) commutative ring which
is complete, local, and Noetherian, then the natural map F(A) — Um{F(A/m*)} is an
equivalence, where m denotes the mazimal ideal of A.

7. Finite Dimensionality: Let n € F(C), where C is a (discrete) integral domain which
is finitely generated as a moR-algebra. For each i € Z, the tangent module Ti(n) is a
finitely generated C-module.
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Remark 7.5.2. Although the statement of Theorem 7.5.1 may look complicated because of
its many hypotheses, one should keep in mind that conditions (1) through (5) are automat-
ically satisfied in almost any case of interest.

Remark 7.5.3. Theorem 7.5.1 may appear more concrete than Theorem 7.1.6 because of
the absence of the cotangent complex, but it is harder to apply in practice. It is hard to
imagine a way of computing the tangent modules T;(n) which does not involve the cotangent
complex (which, after all, is simply a means of fitting the tangent modules T;(n) together
into a base-change compatible package).

Remark 7.5.4. Suppose that, in condition (7), the algebra C is not finitely generated as an
R-algebra but is instead the completion of some finitely generated R-algebra at a maximal
ideal. Let m denote the maximal ideal of C. Using conditions (4) through (6), we can deduce
the finite generation of the tangent modules {7;(7n) }scz from the finite-dimensionality of the
vector spaces {7;(mo)}, where 1y € T;(C/m) is the corresponding C/m-valued point of F.
However, to pass from the finite generation of these formal tangent modules to the finite
generation required by the Theorem, one needs to know that a finite set of generators for the
tangent module at some point can be extended over some neighborhood of that point so that
they generate the tangent module globally. This requires some kind of “openness of versality”
condition of the type discussed in [2]. We shall refrain from giving an exact formulation,

since in practice it is much more natural to verify (7) by computing the cotangent complex
of &F.

177



178



Chapter 8

Examples and Applications

In this final section, we give some examples of derived moduli spaces that can be constructed
using Theorem 7.1.6. We will confine our attention to three basic examples: moduli spaces
of (semi)stable curves, Picard schemes, and Hilbert schemes. Other examples will be given
in [23], after we have developed the theory of geometric stacks.

We will work with the étale topology throughout this section. All derived schemes and
derived stacks will be considered with respect to this topology.

8.1 Stable Curves

One of the simplest examples of derived moduli spaces is the derived moduli space of
semistable curves (of some fixed genus g). As it turns out, this space may be constructed
without even using Theorem 7.1.6, because the classical moduli stack of semistable curves
already represents the appropriate functor on all derived schemes. We now make this precise.

Definition 8.1.1. A morphism p : X — S of derived stacks is a semistable curve of genus
gifpisa relative algebraic space which is bounded, flat, almost of finite presentation, and
each geometric fiber X x g Speck is a semistable curve of genus g over Speck in the usual
sense. That is, X x5 Speck is connected, one dimensional, of arithmetic genus g, and has
at worst nodal singularities.

For each A € SCR, we let 9M,(A) denote the co-groupoid of semistable curves of genus g
over Spec A.

It is easy to see that 91,(A) is essentially small for each A € 8GR, so that we may regard
M, as a functor SCR — 8.

In order to study the deformation theory of 9,, we need the following global version of
Proposition 3.3.8:

Proposition 8.1.2. Let p : X — SpecA be a relative derived scheme, and let M be a
connective A-module. Then the oo-groupoid consisting of relative derived schemes X' —
Spec A© M equipped with an equivalence X >~ X' Xgpec agnmr Spec A s classified by the space
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Homqc, (Lx/a,p*M([1]). Moreover, if X is flat over Spec A, then any such X' is flat over
Spec(A & M).

Proof. For the first part, we observe that the formation of the small extension classified
by the space Homqg, (Lx/a,p*M[1]) gives a map which is an equivalence locally on X by
Proposition 3.3.8. Since both sides are sheaves on X, the conclusion follows. For the second
part, it suffices to work locally on X, so that we may suppose that X’ = Spec B'. Tt suffices
to prove that if N is a discrete A @ M-module, then B’ ®aga NV is discrete. Filtering N
if necessary, we may reduce to the case where moM acts trivially on NV, so that N may be
regarded as an A-module. Then B’ ®om N =~ B' ® agm A ®4 N is discrete because

B ®aam A
is assumed flat over A. O

Theorem 8.1.3. The moduli functor M, is representable by a deriwed 0-stack which is
smooth over SpecZ.

Proof. The classical theory of moduli of curves tells us that there exists an ordinary Deligne-
Mumford stack X, smooth over Z, which represents M, on all ordinary commutative rings.
We may regard X as a 0-truncated derived scheme. The tautological semistable curve over
X gives rise to a transformation X — ;. It now suffices to show that the induced map
X(A) — 9,(A) is an equivalence for all A. Since both functors are nilcomplete, we may
reduce to the case where A is n-truncated. We may now work by induction on n. If n = 0,
the claim follows from the definition of X. For n > 0, we may view A as a square-zero
extension of 7<,_1A. It therefore suffices to show that X is formally étale over 2,. For this,
we simply compute the cotangent complex of 9, using Proposition 8.1.2 and observe that
it agrees with the cotangent complex of X. O

Remark 8.1.4. We could also deduce Theorem 8.1.3 directly from Theorem 7.1.6. The
only difficult points to check are conditions (3) and (4). The verification of (4) involves
computing the cotangent complex of M,, which is essentially equivalent to completing the
deformation-theoretic calculations that are needed in the above proof. The verification of
(3) uses the (classical or derived) Grothendieck existence theorem.

Remark 8.1.5. Given the basic moduli space 9M,, one can construct all manners of varia-
tions: moduli spaces of smooth or stable curves (which are open subfunctors of 901,), moduli
spaces of pointed curves, moduli spaces of stable maps, and so forth.

Our job in this section was particularly easy because the classical moduli stack of semistable
curves was already smooth. This will not be the case in the other examples that we consider,
and in these cases the underlying 0-truncated derived stack of the classical solution to the
moduli problem will not represent the moduli functor in general. In these cases we will
actually need to use Theorem 7.1.6 in order to construct the moduli stack.
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8.2 Derived Picard Schemes

Let p: X — S be morphism of schemes. The classical Picard functor is sometimes defined
to be the sheafification of the presheaf which assigns to each S-scheme S’ the group of
isomorphism classes of line bundles on X’ = X x5.5’. This sheafification procedure is rather
ad-hoc, and there are various methods available for avoiding it. If p has a section s, one
can instead define Picx,s(S’) to be the category of line bundles £ on X’ equipped with a
trivialization of s* £. Under suitable assumptions on the morphism p, this category will be
discrete (in the sense that there are no nontrivial automorphisms of any object), and one
can prove in this case that Picx;s is representable by an algebraic space (this is one of the
original applications of Artin’s representability theorem: see [2]). We will opt for a different
approach, and consider instead the Picard stack 1:’;1-2'3){/5', which assigns to each S* — S the
groupoid of line bundles over X’. This definition makes perfectly good sense in the case
where S, S, and X are derived schemes. A line bundle on X is an object of QC, which
is locally free of rank 1. The line bundles on X form a small co-groupoid, which we shall
denote by Pic(X). We then set PICX/S(S) = Pic(X').

In the case where X = S, the functor Pic x/s is representable by the clasmfymg stack
of the multiplicative group. In general, Pic x/s is given by the Weil restriction p,,P1c x/x of

Picx/x. In [23], we will prove the representability of Weil restrictions such as this one in
great generality. For the moment, we will be content to make the following observation:

Proposition 8.2.1. Let p : X — S be a proper, flat, relative algebraic space. Let F — X
be a natural transformation of functors, and suppose that Ls,x exists and is almost perfect.
Then the Weil restriction p. F has an almost perfect cotangent compler over S.

Proof. Let no € S(B) and let M be a connective B-module. Then the fiber of p, F(BOM) —
(p. F)(B) xs3) S(B @ M) is also given by the fiber of F(Xpggnm) — F(Xp) X xz Xpem. By
assumption, this is given by

Homqcy  (Ls/x|Xs,p"M|X5).

Since the restriction of p to Xp is a proper, flat, relative algebraic space over Spec B, we
may deduce the existence of L,, 5,5 from Corollary 5.5.8. a

Theorem 8.2.2. Suppose p: X — S is a proper, flat, relative algebraic space. Then Pic x/8
is representable by a derived stack which is locally of finite presentation over S.

Proof. Without loss of generality, we may suppose that S = Spec A is affine. Using Corollary
9.4.7 we may reduce to the case where A is n-truncated. Proposition 5.4.10 may be used to
reduce further to the case where A is of finite presentation over Z, and therefore a derived
G-ring. We may now apply Theorem 7.1.6, once we have verified its hypotheses. The only
conditions which offer any difficulty are (3) and (4). Condition (3) follows from the (classical
or derived) formal GAGA theorem, while condition (4) follows from Proposition 8.2.1. [
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Remark 8.2.3. The proof of Proposition 8.2.1 also shows how to compute the cotangent
complex of a Weil restriction p, J: it is the quasi-coherent complex on p, F given by applying
Corollary 5.5.8 to Ly/x. Morally, this is given by taking the dual of Lg,x, pushing it forward
to p. F, and taking the dual again. This idea can be made precise using a derived version of
Grothendieck duality.

Let p : X — S be a proper flat relative algebraic space equipped with a section s.
Then p and s induce pullback maps p* : Picsig — Picxys and s* : Picxys — Picgys.
One can then define a reduced Picard functor Picx;s to be the kernel of s*. Using the
pullback functor p* and the group structure on Pic x/5, we deduce a natural decomposition
Picx/s = Picxs xﬁ:g/g. Consequently, Picy,s may also be defined as the cokernel (in the
étale topology) of p*, and is independent of s. The cotangent complex of Picy/s is dual
to K[1], where K is the cokernel of the natural map Og — p, Ox. In particular, if X has
‘Tor-amplitude < —1, then the cotangent complex of Picx,g is connective so that Picx;s is
representable by a derived scheme. We note that the formation of K is compatible with
arbitrary base change, so that the condition on its Tor-amplitude can be checked after base
change to every geometric point Spec k — S; after this base change, it is equivalent to the
assertion that H%(X, Ox) ~ k.

Remark 8.2.4. Under the same conditions, the classical Picard functor is representable
by an algebraic space. This algebraic space is obtained from our derived version Picx/s by
truncating the structure sheaf. In particular, they have the same étale topologies, and so any
topological gquestion concerning Picx,s (such as whether or not it is separated, or whether
its connected components are quasi-compact) is equivalent to the classical analogue of the
same question.

Remark 8.2.5. The tensor product of line bundles induces an E,,-multiplication (with
inverses) on each of the Picard functors introduced above. We may therefore think of Picx,s
as a “commutative group object” in the setting of derived stacks over S. Consequently, the
cotangent complex 2 of Picx/g is the pullback of its restriction to S along the identity section
(just as the tangent bundle to any Lie group has a canonical trivialization by left-invariant
vector fields).

Remark 8.2.6. Let S be an ordinary scheme, and let G be a group scheme over S. If G
is flat over S, then the derived fiber powers of G over S coincide with the ordinary fiber
powers of G over S. It follows that G may be given the structure of a “group object” (with
Aq-multiplication) in the setting of derived S-schemes. If G is not flat over S, then this
need not be true: /the multiplication 7<o(G xg G) — G need not extend to G xg G in any
canonical way. In this setting, the cotangent complex of G need not be a pullback from §.
For example, one may have a group scheme which is smooth along the identity section, but
not everywhere smooth. This phenomenon cannot arise in the derived setting.

Example 8.2.7. Let p: X — S be a proper flat morphism with geometrically connected,
geometrically reduced fibers of dimension 1. By reducing to the case where S is the spectrum
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of a field, one can easy show that Lpic, ¢ /s is locally free (its fiber at a point Speck —
Lpicy,s /s is equivalent to the vector space H'(X x5Speck, Ox | X x5Speck)). Consequently,
Picx/s is smooth, and therefore flat over S. When S is an ordinary scheme, this means that
Picx;s may be identified with the classical Picard scheme.

Example 8.2.8. Let p: X — S be an abelian variety (over an ordinary scheme S, say) of

dimension n > 1. Then the cotangent complex of Picy/g is not projective (for example, the
nz—n)

restriction of m; Lpic, /518 along the identity section is a vector bundle of dimension
Consequently Picx,s is not smooth over S, even along its identity section. It follows that
we cannot identify the identity component of Picx/s with the dual abelian variety XV of X

This is a case in which a classical moduli problem has multiple derived analogues. There
is a natural map j : XV — Pic x/s which identifies XV with the 0-truncation of the identity
component of Picyys.

To understand why j is not étale, we must recall a few simple facts about line bundles
on abelian varieties. Suppose that S is an ordinary scheme. Given a line bundle L of
degree 0 on X which is trivialized along the identity section, there is a unique isomorphism
¢ m* L ~ 7w} L ®n} L which is compatible with various trivializations along the identity
sections (here m : X xg X — X represents the addition law and g, m : X Xg X — X the
two projections). This isomorphism gives rise to a group structure on the complement of the
identity section in the total space of £, and therefore an extension of X by the multiplicative
group Gy,.

This argument fails if 5 is allowed to be a derived scheme, due to interactions between the
higher homotopy groups of the structure sheaf of S and the higher cohomologies of abelian
varieties. The derived scheme Picx/g classifies arbitrary line bundles on X (trivialized along
the zero section), and its definition does not require any mention of the abelian variety
structure on S. The dual abelian variety X" instead classifies extensions of X by G,, (as
Z-modules). For more details, we refer the reader to [25)].

8.3 Derived Hilbert Scheme

Our last application of Theorem 7.1.6 will be the construction “derived Hilbert schemes”.
Recall that in classical algebraic geometry, given a separated morphism X — S of schemes,
the Hilbert functor Hilbx,s(S’) is defined to be the set of closed subschemes ¥ C X xg 5’
which are proper, flat and of finite presentation over §’. A classical result of Grothendieck
asserts that Hilbx,s is representable by a scheme if X is projective over S. Moreover, in
this case Hilbyx,/s may be decomposed into disjoint components (classified by their Hilbert
polynomials), each of which is quasi-compact.

Using his abstract representability criteria, Artin was able to prove the representability of
the Hilbert functor under much weaker assumptions. However, the price of using the abstract
approach is that it gives no information about the global structure of the Hilbert functor:
one knows only that Hilbx/g is representable by an algebraic space. Quasi-compactness may
fail, even for its connected components.
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The moduli problem represented by the Hilbert functor should be thought of in two parts:
first, one classifies all proper, flat S-schemes Y. Having done this, one considers all closed
immersions from Y into X (over S). The first part of the problem is more basic, but the
second part is relevant for two reasons:

1. The collection of proper flat S-schemes is naturally organized into a category. It is
unwise to ignore the existence of nontrivial automorphisms in this category. Adding
the data of an embedding into X kills all of these automorphisms, thus “rigidifying”
the moduli problem.

2. By restricting our attention to S-schemes which arise as closed subschemes of X, we
avoid certain technical issues concerning the algebraization of formal deformations.
There can be no algebraic stack which classifies proper, flat families: the existence of
such a stack would imply that every proper, flat formal scheme was algebraic. This
issue does not arise for subschemes of a given ambient scheme which is already algebraic
(because Grothendieck’s formal GAGA theorem implies that when S is the spectrum of
a complete Noetherian ring, then any formal closed subscheme of the formal completion
of X is the formal completion of a closed subscheme of X).

In the derived context, (1) becomes somewhat irrelevant. The Hilbert functor will be
S-valued, rather than set-valued, whether we rigidify the moduli problem or not. However,
(2) is just as much an issue in the derived context as in the classical context, and thus we
shall continue to restrict our attention to the classification of closed subschemes of some fixed
X. Let us simply remark that the condition that ¥ be embedded in X can be somewhat
relaxed: we could equally well consider a Hilbert-like moduli functor which classified flat
S'-derived schemes which were finite over X', for example.

Definition 8.3.1. Let p : X — S be a separated relative algebraic space. The derived
Hilbert functor Hilbx,s associates to each derived S-scheme S’ the co-groupoid of derived
X' = X xg S'-schemes Y which are proper and flat over §’, and for which ¥ — X' is a
closed immersion which is almost of finite presentation.

It not difficult to see that Hilby/g is 8-valued (that is, given S’ as above, there are a
bounded number of possibilities for ¥ up to equivalence), and that Hilbx/s is a sheaf for
the étale topology. We should warn the reader that, unlike the classical Hilbert functor,
Hilbx/s is not set-valued. This is because a closed immersion of derived schemes need not
be a categorical monomorphism in any reasonable sense.

Remark 8.3.2. If S is a derived algebraic space, then on discrete commutative rings Hilby,s
agrees with the classical Hilbert functor associated to the map of algebraic spaces 70X —
7<0S. Thus, if Hilby/s is representable by a derived stack, then it is representable by a
derived algebraic space.

Theorem 8.3.3. Suppose that p : X — S is a separated relative algebraic space. Then
Hilbx/s is representable by a relative derived algebraic space which is locally almost of finite
presentation over S.
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Proof. Without loss of generality, we may suppose that S = Spec A is affine. We note that
if U is an open subfunctor of X, then Hilby,s is an open subfunctor of Hilbx,s. Moreover,
if X is the filtered colimit of a system of open subfunctors U,, then Hilbx/s is the filtered
colimit of the open subfunctors Hilby, ;5. Consequently, we may reduce to the case where X
is quasi-compact over S, and therefore bounded.

We note that if S’ is n-truncated, then the S’-valued points of Hilbx/s depend only
on 7<,X. Using a direct limit argument, we may find a map Aq — A, where A is of finite
presentation over Z, and a derived scheme X, almost of finite presentation over Sq = Spec Aq
together with an equivalence 7<,X =~ T<,Xo Xg, S. Enlarging A, if necessary, we may
guarantee that X is separated.

Using Corollary 5.4.7, we may deduce the representability of Hilbx/s from the repre-
sentability of Hilby,,s, for all n > 0. Thus, we may suppose that A is of finite presentation
over Z, and therefore a derived G-ring.

We now apply Theorem 7.1.6 to the functor Hilby,s. As usual, the only conditions
which are not obvious are (3) and (4). Condition (3) follows from the classical Grothendieck
existence theorem (we could also prove the derived version of condition (3) using our derived
version of Grothendieck’s formal GAGA theorem).

It remains to verify condition (4). We will do this by computing the cotangent complex
of Hilbx/s at a point 1 € Hilbx,s(B). The point 5 classifies a closed immersion Y — X' =
X x gSpec B such that the induced map g : ¥ — S’ is flat. Proposition 8.1.2 implies that if M
is a connective B-module, then the fiber of the natural map H11b x/5(B® M) — Hilbyx,s(B)
over 7 is given by the space

Hochy (Ly/x!, q*M)

This functor of M is corepresentable by an almost perfect B-module by Proposition 5.5.8. [

Remark 8.3.4. In characteristic zero, a derived version of the Hilbert scheme (of projective
space) has been constructed by Ciocan-Fontanine and Kapranov (see [7]) using a different
approach.
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Chapter 9

Appendix: Grothendieck Topologies
on oco-Categories

In this appendix, we sketch the construction of an oo-topos from a small oo-category with
a Grothendieck topology. A related (and more detailed) discussion can be found in [39)].
However, the theory presented here is slightly different because we will impose weaker descent
conditions, and the co-topoi that we construct will not necessarily be t-complete in the sense
of [39]. The oo-topoi constructed in [39] may be obtained from ours by passing to the t-
completion. On the other hand, the oo-topoi constructed here may be described by a simple
universal property (see Proposition 9.0.9 below).

Let € be a small co-category. We now recall the definition of a Grothendieck topology
on €.

If X € C is an object, then a sieve on X is a full subcategory S C €,x, which is closed
downwards in the sense that if a morphism ¥ — X belongsto S and Z — Y is any morphism,
then the composite Z — X belongs to S.

If f: X — Y is a morphism and S is a sieve on Y, then we may define a sieve f*S on X
by declaring that a morphism Z — X belongs to f*S if the composite map Z — Y belongs
to S.

A Grothendieck topology on € consists of the specification, for each object X € G, of
a distinguished family of sieves on X which are called covering sieves. The collection of
covering sieves is required to satisfy the following conditions:

1. For any object X € C, the sieve consisting of all morphisms {Y — X} is covering.

2. If f: X — Y is a morphism and S is a covering sieve for Y, then f*S is a covering
sieve for S.

3. Suppose that S is a sieve on X € €, and S’ is a covering sieve for X. Suppose further

that for each f : Y — X belonging to 5, the sieve f*S on Y is covering. Then S is
covering.
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Remark 9.0.5. There is a natural bijection between the set of all sieves on an object
X € C and the set of all sieves on the corresponding object in the homotopy category A C.
Consequently, we see that specifying a Grothendieck topology on € is equivalent to specifying
a Grothendieck topology on h €.

Now suppose that the oo-category € has been equipped with a Grothendieck topology.
A presheaf F : C? — § will be called a sheaf if it satisfies the following condition: for any
object X € €, and any covering sieve S on X, the natural map

F(X) — limyes F(Y)
is an equivalence.

Proposition 9.0.6. Let C be a small oo-category equipped with a Grothendieck topology.
The oo-category Shv(€) of sheaves on € forms an co-topos.

Proof. Tt will suffice to show that Shv(€) is a left-exact localization of the co-category P : 8
of presheaves on €. We sketch the construction of the localization functor L : P — Shv(€) C
P; it parallels the construction given in [22] in the case where € is an ordinary category.

If F is a presheaf on €, we let F7(X) = colimglimyes F(Y). Here, the colimit is taken
over the filtered collection of all sieves S on X, and the limit is taken over the sieve S
(regarded as an co-category). The construction F — F may be regarded as a functor
P — P. There is a transformation F — F* (natural in F).

We will construct L as the colimit of a transfinite sequence of iterations of the functor
F — F. Namely, we define functors L, : P — P indexed by the ordinals o by transfinite
recursion. Let L be the identity functor, let Ly F = (L, F)t, and let Ly F = colimgey Lg F
when A is a limit ordinal.

One proves by induction on « that Homg(L, F, §) ~ Homsp(F, §) whenever G is a sheaf.
Using straightforward cardinality estimates, one shows that L, J is a sheaf for a sufficiently
large (independent of F). We may then take L = L,. One checks easily that L is an accessible
functor. To prove that L is left-exact, it suffices to show that the functor L* is left-exact.
This follows from the fact that the partially ordered set of sieves on any given object X € €
is directed downward under inclusion (in fact, it is closed under finite intersections: this
follows easily from the definition). O

Remark 9.0.7. The underlying topos of discrete objects 7<o Shv({€) is naturally equivalent
to the category of sheaves of sets on the homotopy category h C.

Remark 9.0.8. In contrast to the classical theory of Grothendieck topologies, it is not the
case that every oo-topos arises as the oo-category of sheaves on some small oo-category with

a Grothendieck topology.

The oc-topos 8hv(€) admits the following characterization:
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Proposition 9.0.9. Let € be a small oo-category equipped with a Grothendieck topology,
and let X be any oo-topos. Then the oo-category of geometric morr"phzsms from X to 8hv(C)
is equivalent to the full subcategory of geometric morphisms f: X — 8% which possess the
following property:

e For each object X € € and each covering sieve S of X, the induced map

Hf*Xl_)f*X

X'e8
is a surjection in X.

Here we have identified objects of € with the corresponding representable presheaves on C via
the Yoneda embedding.

Proof. Since 8hv(€) is a localization of §¢”, it is clear that the co-category of geometric
morphisms from X into 8hv(C) is a full subcategory of the co-category of geometric. mor-
phisms X — 8%7. Moreover, f : X — 8 belongs to this full subcategory if and only if the
natural transformation f* — f* o L is an equivalence, where L : $¢" — 8%7 denotes the
corresponding localization functor.

Suppose first that f factors through Shv(€C). Let S be a covering sieve of X € €. To
prove that '

H f* X 5 X

X'eS
is surjective, it suffices to prove the corresponding statement in Shv(C), so we may assume
that X = Shv(C) and f* = L. Let Y denote the image of [[,LX, in X. Then ¥ — LX
is (—1)-truncated. To prove that Y ~ LX, it suffices to show that the tautological point
n € LX(X) lifts (automatically uniquely) to a point of Y (X). This assertion is local on
X, so it suffices to prove that n|X, € LX(X,) lifts to a point of Y(X,), which follows
immediately from the factorization LX, - Y — LX.

For the converse, let us suppose that f satisfies the condition stated in the theorem. We
must show that the natural map f*X ~ f*LX is an equivalence. It suffices to show that
Homy(f*LX,Y) ~ Homx(f*X,Y) is an equivalence for each Y € X. In other words, we
must show that Hom(LX, f.Y) — Hom(LX, f.Y). By definition, it will suffice to show that
1Y is a sheaf. Equivalently, we must show that for each object Z € € and each covering
sieve S over Z, the natural map colimz.cs f*Z’ — f*Z is an equivalence. We note that
the colimit colimzg Z’ in 87 is given by the presheaf F, where ¥ is the “characteristic
function” of the subcategory S C €,z. In other words, for each C € €, the space F(C) is
given by the union of those components of Home(C, Z) consisting of morphisms C — Z
which belong to S.

In particular, we note that the natural map § — Z is (—1)-truncated, so that f* % — f*2
is (—1)-truncated. To prove that it is an equivalence, it suffices to show that it is surjective.
This follows immediately from the assumption since [, ¢ f*Z" — f*Z factors through

T O
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